U.S. Department of the Interior
U.S. Geological Survey

LDCM CAL/VAL
ALGORITHM DESCRIPTION DOCUMENT

February 25, 2013
Version 3.0

a USGS

science for a changing world







Section 1 DOCUMENT HISTOMY ..uuuiiiiei et Vi

ST=Tod 1T ] o BVZA | 01 4 o Yo 1U [od 4 o ] o 1
Section 3 DOCUMENT OVEIVIEW ......uuiiiiiiiiiiiiiiiiiiiieiiiiiiisissbsiseseebbsssesbeeebsaeenensnnennnnnaees 2
Section 4 INSIrUMENT OVEIVIEWS ....uuuuiiiiiiiiiiiiiiiiiiieiiiiisisiseeseaneersseereeenaeaaaeeeeeeeaeanane 3
St | P 3
4.1.1  On-Board CaliDrators.............uuuueiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeaaaes 3
4.1.2 Geolocation Calibration ACHVILIES ..........oiiiiiiiiiiiiiiiiiee e 3

4.2 TIRS 4
4.2.1  Onboard CaliBrator ...........uuiiii i 5
A A o g [T =Tt 0 11 ) N 5
Section 5 Characterization and Calibration OVerview ............cccccuvvvevimiiiieiininnnnnnnns 7
SECLION 6 PrOCESS FIOWS . .uiiiiiiiiiiiiiiiiiiiiiiiiiiiiitiiii bbb bsbbbsnbnnnannne 8
6.1  OLI GEOMELIIY ..ot e et e e e et e e e e eeb e e e e eana e eaeees 8
G2 @ I I =T [T 11 PSS 9
6.3  TIRS GEOMELIY ... e e e 10
6.4  TIRS RAGIOMELIY ..o e e e e e e e 11
SECtioN 7 AlQOTITIIMS ... 12
7.1  Common Geometry AlgOrthmS..........uiiiiiieiiecce e 12
7.1.1  Coordinate SYSIEMIS......ccoiiiiiiiiiiiiie e 12
7.1.2  TIME SYSIEIMS ..ot e e e e e e e e e e e e e e e e 21
7.1.3  Scene Framing Algorithm ... 23
7.1.4  Ancillary Data Preprocessing Algorithm..............ccoooiiviiiiiiii e, 52
7.1.5  Ground Control Point Correlation Algorithm............ccccccviiiiiiiiiinnnnnnn. 86

7.2  OLI Geometry AlQOMthmsS.........coooiiiiiiii e 100
7.2.1  OLI Line-of-Sight Model Creation Algorithm ...........ccccccvviiiiiiiiiiiiinnnnnn. 100
7.2.2  OLI Line-of-Sight Projection/Grid Generation Algorithm ........................ 126
7.2.3  OLI Line-of-Sight Model Correction Algorithm ...........ccccccvviiiiiiiiiiinnnnnn. 177
7.2.4  OLI Resampling Algorithm .........ccoooeeiiiiiiice e 218
7.2.5  Terrain Occlusion Mask Generation Algorithm ..........cccccccviiiiiiiiiiinnnnnn. 240
7.2.6  OLI Geometric Accuracy Assessment (L1T)......ccoovvvviiviiiiiieeeeeeeeiiiinnn, 246
7.2.7  OLI Geodetic Accuracy Assessment (L1GS)......cccccvvvivviiiiiiiiiiiiiiieeennnn. 262
7.2.8  OLI Image Registration Accuracy Assessment Algorithm...................... 271
7.2.9  OLI Band Registration Accuracy Algorithm........ccccccccvviiiiiiiiiiiiiiiiinnnnnn. 285
7.2.10 OLI Band-to-Band Calibration Algorithm............cccoovviiiiiiiiiieeieeen, 313
7.2.11 OLI Focal Plane Alignment Calibration ...........cccccccoiiiiiiiiiiiiiiniiinnnn. 329
7.2.12 OLI Sensor Alignment Calibration Algorithm...........cccccceeiiiiiiiiiiiin, 348
7.2.13 OLI MTF Bridge Characterization .............ccccccvviiiiiiiiiiiiiiiiiiiiiiieeeeeeeee 360

7.3  TIRS Geometry AlgOrithmsS .......cooiiiiiiiii e 390
7.3.1  TIRS Line-of-Sight Model Creation ............ccccccvvviiiiiiiiiiiiiiiiieeee 390
7.3.2  TIRS Line-of-Sight Projection/Grid Generation.............cccceeeeeeviviieeeeennnn. 425
7.3.3  TIRS Resampling Algorithm...........ccoooiiiieee 476
7.3.4  TIRS Band-to-Band Calibration Algorithm ...........cccccoooiiiiiii e, 498
7.3.5  TIRS Alignment Calibration Algorithm...........ccccccvviiiiiiieee 515
7.3.6  TIRS Band Registration Accuracy ASSESSMEeNt...........cccuvvveeererrnieeeeennnn. 542

7.4  Common Radiometry AlgOrithms .......cooooiiiiiiii e, 564

7.4.1 Dropped Frame Characterization.............ccceeieeiiiiiiii e 564



7.4.2 Impulse Noise Characterization ...............uuuvuiiieneeiiiieiiie e 566
7.4.3  Saturated Pixel Characterization ..........ccccccocviiiiiiiiiiiieeeeeeee 568
7.4.4  Histogram Statistics Characterization ...........cccccccccvvviviiiiiiiiiiiiiiiiiiieeee, 571
7.4.5  Coherent Noise Characterization...........cccccceveviiiiiiiiiiiiiieeeeeeeeeee 575
7.4.6  Temperature Sensitivity Characterization ...........cccccccvvvviiiiiiiiiiiiiiinnnnnnn. 583
7.4.7  Temperature Sensitivity COrrection............cccceeeieeeeiiieeiiiiii e 586
7.4.8  Gain APPLICALION......ccooiiiiiiiiiii 588
7.4.9  L1IR SCA SHICNING ..ccoiiiiiiiiiiiiie e 590
7.4.10 Striping Characterization.............ccoovviiiiiiiiiiiiiiieeeeee e 597
7.4.11 Non-uniformity Characterization ...............ccceeiiiieeeiiiiiiicee e 604
7.4.12 Signal-to-Noise Characterization Noise Equivalent Delta-Temperature
Characterization ...........coooiiiiiii i 608
7.4.13 Detector Operability Characterization ...........cccccccevvviiiiiiiiiiiiiiiiiiiiiieeee, 615
7.4.14 Relative Gain Characterization (Histogram Method)................cccevvvunnnnn. 620
7.4.15 Relative Gain Characterization (90-Degree Yaw) .......ccccccvvvevrvriiiieeeennn. 624
7.4.16 SCA Overlap Statistics Characterization.............ccccevvvviiiiiieeeeeeeeiiiinn, 627
7.4.17 SCA Discontinuity COIreCtioN...........coovviiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeee 636
7.4.18 Inoperable Detectors Fill ............ccoooiie i 638
7.4.19 Residual Striping COITECHION .....cceeviiiiiiiiiiiiiiieeeeeeeeeeeeeee e 639
7.4.20 Saturated Pixel Replacement ...........cooovviiiiiiiiii e 641
7.4.21 Radiance ReSCAliNG........cccoiiiiiiiiiiiiieeeee e 642
7.4.22 Cloud Cover Assessment CCA — CONtrol .........ccoevvvvviiiiiiiiiiiiiiiiiiiiienenn, 644
7.4.23 Cloud Cover Assessment CCA — Artificial Thermal (AT)-ACCA ............ 649
7.4.24 Automated Cloud Cover Assessment ACCA ........cccccvvvviiiiiiiiiiiiiiieeeee, 655
7.4.25 Cloud Cover Assessment CCA- SEE5 ........covvviiiiiiieiiiiiiinee e 658
7.4.26 Cloud Cover Assessment CCA — CiITUS .....oovvvveiiiiiiiiiieiiiiiiieeeeeeeeeeeeeeee 660
7.5  OLI Radiometry AlgOrthmMS .......coooiiiiiieeeeeeeee 662
7.5.1  OLI Bias Model Calibration ............ccoovviiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeee 662
7.5.2 OLI Bias Determination............ooueuuuuuiiiieeeeeeeeeeiiiiiss e e e e e eeeeesnnnnn e e e eeeeeeennes 670
7.5.3 OLIBias Removal........ccccccoiiiiiiiiiiieee 675
7.5.4  OLI Characterize Radiometric Stability (16-day)........ccccccevvvriiiiiiiiinnnnnn. 677
7.5.5  OLI Nonlinear Response Characterization (OLI) ..........cccooeeeeeiiiiirinnnnnnn. 684
7.5.6  OLI Response LiNearization..............ccuuvviiiiiiiiiiiiiiiiiiiieeieeeeeeeeeeeeeeeeee 689
7.5.7  OLI Alternate Response Linearization (OLI) ..........ccoovviiiiiiieeeieeiiiiiinn, 692
7.5.8  OLI Detector Response Characterization (Solar Diffuser) .........ccccc...... 695
7.5.9  OLI Standalone 60 Second Radiometric Stability Characterization ....... 705
7.5.10 OLI Detector Response Characterization (Lamp) ........cccovvvevreereirieeeennn. 710
7.5.11 OLI Lunar Irradiance Characterization ...........cccccccevveeiiiiiiiiiiiiiiiiieieeeee, 717
7.5.12 OLI Reflectance CONVEISION .......coiieeieiiieiiiiiiiee e e 723
7.6  TIRS Radiometry AIgOrthms.........coouuiiiiii e 727
7.6.1  TIRS Dark Response Determination..........ccccccceevviiiiiiiiiiiiiiiiiiiiiiiiieeeeee, 727
7.6.2  TIRS Bias Model Calibration............coooviiiiiiiiiineeeeeiii e 730
7.6.3  TIRS BiaS REMOVAl ......cccoiiiiiiiiiii e 730
7.6.4  TIRS Nonlinear Response Characterization ...............ccccceeeeeieeiiinieeeennnn, 732
7.6.5  TIRS Response LINearization ...........cccuuvviiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeee 733
7.6.6  TIRS 40 Minutes Radiometric Stability Characterization........................ 736



7.6.7
7.6.8
Section 8
Section 9

TIRS Background Response Determination .............cooeveevvviiininneneeeeennns 744
TIRS Gain DetermMiNation.........coeveeuuuiiiiee e e et e e e eeeeeir e eeeeeeeens 746
I q o o ] o TSP 751

R I BN CES ..o e 753



Section 1 Document History

Document Number | Document Publication Change
Version Date Number
LDCM-ADEF-001 Version 1.0 | February 19, 2010 CCR 1102
LDCM-ADEF-001 Version 2.0 April 20, 2012 CCR 1341
LDCM-ADEF-001 Version 3.0 | February 25, 2013 CCR 1419




LDCM-ADEF-001
Version 3

Section 2 Introduction

The Landsat Data Continuity Mission’s (LDCM), Landsat 8 (L8), is the latest satellite in the 40 year
history of the Landsat program. Before the data are made available, they will be radiometrically and
geometrically corrected using processing inputs from the Calibration Parameter File (CPF), and Bias
Parameter File (BPF), and Radiometric Look-Up Table (RLUT). The Calibration Validation Team
(CVT) will ensure that these files are monitored and updated over the life of the mission. The Image
Assessment System (IAS) was developed to assess data on-orbit and to monitor changes temporally.
The radiometric, geometric and spatial performance of the OLI and TIRS sensors will be continually
monitored, characterized and calibrated on-orbit. Data that are processed by the LPGS system will
also be trended to a database for later analysis by the Calibration Validation Team (CVT). The CVT
will monitor the performance of L8 data on a daily basis by trending the results of radiometric and
geometric algorithms processed on all data. Through regular evaluation of the stored results in the
database, changes in instrument behavior can be monitored and corrected over time. The CVT will
monitor the changes in the sensor and determine what should be updated in the CPF, BPF, and
RLUT in order to create better image products while maintaining a level of consistency for
comparability through time. This document details all of the radiometric and geometric processing
algorithms for the image assessment and data processing of the Landsat 8 sensors.



LDCM-ADEF-001
Version 3

Section 3 Document Overview

This document explains the methods for the geometric and radiometric characterization and
calibration of the LDCM OLI and TIRS instruments implemented within the USGS EROS DPAS. A
brief overview of the instruments and their data is provided, followed by discussions of the design
philosophy, data flow diagrams and algorithm descriptions developed within the Cal/Val Toolkit
(CVTK) for geometric and radiometric characterization and calibration.



LDCM-ADEF-001
Version 3

Section 4 Instrument Overviews

The Landsat Data Continuity Mission (LDCM) is a joint mission formulated by the National
Aeronautics and Space Administration (NASA) and the U.S. Geological Survey (USGS). The LDCM
is a remote sensing satellite mission providing coverage of the Earth’s land surfaces. This mission
continues the 30+ years of global data collection and distribution provided by the Landsat series of
satellites.

The space segment consists of an observatory that will be launched into a 705 km, 10:00 AM
equatorial crossing sun synchronous orbit consistent with Landsat-7. The spacecraft will
accommodate the OLI and TIRS. The spacecratft is being developed by General Dynamics
Aerospace Information Systems.

4.1 OLI

The OLI instrument will image the Earth in 9 spectral bands which cover the visible, near-Infrared
(VNIR) and Short Wave IR (SWIR) portions of the electromagnetic spectrum (see Table 1). Seven of
the spectral bands are narrowed and refined from the Landsat-7 Enhanced Thematic Mapper Plus
(ETM+) bands; a coastal/aerosol and a cirrus detection band have been added. All bands will be
acquired at 12-bit radiometric resolution; 8 bands will be 30 meters and 1 band, the panchromatic
band, will be 15 meters (see Table 1).

The OLI instrument is a pushbroom sensor being supplied by Ball Aerospace Technology Company.
The telescope contains four mirrors with a front aperture stop that is 135 mm. The Focal Plane Array
(FPA) is comprised of 14 Sensor Chip Assemblies (SCA) as shown in Figure 1 that is passively
cooled. Each SCA contains 494 detectors with an additional 12 video reference pixels that don’t
respond to light.

4.1.1 On-Board Calibrators

The OLI provides both internal calibration sources such as lamps to ensure radiometric accuracy as
well as capabilities to perform solar and lunar calibrations within the field of view constraints.

Solar Calibration and Linearity: The spacecraft must point the sun-viewing boresight at the sun and
track it. To assure the calibration returns valid results, there must be a glint-free field of view for the
diffuser as defined in the ICD. During solar looks, the solar array will be angled to prevent it from
infringing on the glint-free field of view.

Lunar Calibration: The spacecraft must perform sweeps across the moon to image the moon on all
14 FPMs. Since the moon is only large enough to subtend on 1 FPM, it will require 14 sweeps across
the moon (over multiple orbits if necessary) with the spacecraft yawing to place the moon on each of
the FPMs.

4.1.2 Geolocation Calibration Activities
The following geolocation calibration activities require spacecraft operations:

Star Field Calibration: A section of the sky that is visible to both star trackers and the instrument
must be imaged to locate stars against the star catalog. This will occur during commissioning only.




LDCM-ADEF-001
Version 3
Calibration Data: In order to perform the calibration, the raw star tracker and gyro data for ground
processing must be available.

Figure 1: OLIfocal plane assembly

Table 1. Spectral ranges and pixel sizes of OLI bands

# Band Center | Wavelength Center Minimum | Maximum
(nm) Wavelength Lower Upper
Tolerance | Band Edge | Band Edge
(xnm) (nm) (nm)
1 Coastal Aerosol 443 2 433 453
2 Blue 482 5 450 515
3 Green 562 5 525 600
4 Red 655 5 630 680
5 NIR 865 5 845 885
6 SWIR1 1610 10 1560 1660
7 SWIR2* 2200 10 2100 2300
8 Panchromatic** 590 10 500 680
9 Cirrus 1375 5 1360 1390
4.2 TIRS

The Thermal Infrared Sensor (TIRS) is a 2-band thermal imager at 10.8 and 12 microns. Both bands
will have a spatial resolution of 100 meters operating in a pushbroom method to achieve a 188-km
swath width. The Focal Plane Array (FPA) is comprised of 3 Sensor Chip Assemblies with Quantum
Well Infrared Photometers (QWIPs), and will be built in-house at the NASA Goddard Space Flight
Center. The FPA will be cryo-cooled to 43 K with an optical assembly passively cooled to 180K. A
scene select mirror in the optical path will allow calibration with 2 sources; a variable temperature
blackbody and space views.

The optical design is a four-element refractive design with a 107.8 mm clear aperture. Three of the
elements are based on germanium and the fourth on zinc selenide. TIRS has two spectral bands
achieved through interference filters. The filters are thermally connected to the focal plane and
operate at somewhat higher temperature. Transmission characteristics are tailored for each band.



LDCM-ADEF-001
Version 3
Very good out of band rejection is required to perform precise spectral radiometry and the in-band
transmission must be high enough to meet the detector sensitivity goals. In addition, filter placement
must accommodate a 2.5 second simultaneity requirement between 10.8 and 12 um measurements
and all data must be collected within 170 rows of detector pixels.

TIRS relies on QWIP detectors coupled with existing Indigo 9803 640 x 512 pixel ROICs to give the
previously-mentioned 185 km swath in 3 arrays with 35 pixel overlap between arrays.

4.2.1 Onboard calibrator
A key component for the TIRS sensor is the onboard calibrator. The calibrator will be a curved-plate
blackbody with V-grooves to improve emissivity. The design and coating will be very similar to that
used for MODIS to give high emissivity and controllable temperature. The output from the blackbody
will be NIST traceable and capable of providing sources of two temperatures between 265 and 330 K
within two orbits. Set point control of the blackbody will be 2 K with the capability to change the

temperature by 6 K per half orbit.

4.2.2 Scene-select mirror

A scene-select mirror rotates around the optical axis on a 45-degree plane to provide the telescope
with a view to nadir (earth), space (cold calibration “target”), and on-board blackbody (hot calibration
target). The mirror is based on a solid aluminum blank diamond turned flat and super polished. The

size of the mirror is 206.5 x 148.5 mm

1820 prx | 1850 pix
14.8° 15

TIRS Focal Plane Assembly (FPA)
@ [Pathfinder design for FPM]

570 pix

— > i
Band 1 frt— i

Figure 2. TIRS focal plane assembly



Table 2: Spectral ranges and pixel sizes of TIRS bands

LDCM-ADEF-001
Version 3

# Band Center Center Wavelength | Minimum Lower | Maximum Upper
Wavelength Tolerance (znm) Band Edge (nm) | Band Edge (nm)
(nm)

10 | Thermal 1 10800 200 10300 11300

11 | Thermal 2 12000 200 11500 12500




LDCM-ADEF-001
Version 3

Section 5 Characterization and Calibration Overview

As used in this document, characterization is the process of measuring and evaluating the geometric
and radiometric performance of the OLI and TIRS instruments. Calibration is the process of using the
information obtained during characterization to update the calibration parameters associated with the
both instruments. The following characterization and calibration routines for each instrument are
discussed.

All calibration parameters are stored in an American Standard Code for Information Interchange
(ASCII) file that can be accessed during processing. The file containing these parameters is referred
to as the Calibration Parameter File (CPF) in this document.



Section 6 Process Flows

LDCM-ADEF-001

Version 3

In order to perform the characterization, calibration and correction functions, described in the LDCM
Government Calibration and Validation Plan, each of the algorithms (described below in Sections 3
and 4) are linked together in a processing flow. This processing flow is separated into OLI geometry,
OLI radiometry, TIRS geometry, and TIRS radiometry.

6.1 OLI Geometry

Algorthm#uncton 1 ] Pomnmal Algonihmfuncion
(salid autline) 1 | (doted outline)

]

Characterization D&

<>mmm“..,u, <>
Euummm’mle E Special input file

— CPF input

Special image
Inputiouput

Special Interme diate
INPULEBUPUE

h )

OLI Geometric Processing Overview

—> Processing Flow

Ingest
— Do Ancillary Data Preprocessing
S BLFGS )
— — —p Lunarony
- . LOR, Processed
Telemetry
—
Calival Toolkit Model Une-ofSightModel Creaton |y Rddomelric rocessing
Parametrs ] o
______________ Geomewic Model
(ByeEmait) (sysEmanc)
S— Line-ofSight F rojection Elpsod
Detector Offset & Temain <
===
. L Statistics . a1 }
Model P ——— e —————————————— = Geomeic Lunar,
3 Gnd Ephermert:

Input eomewe~ |

. Gnd v

"

Scene Product Type
(ON)OMMacke
(£S) Cal-Sie
(M) teadi
(U) Luner,

() All scene types

Geometic Grid
Mo ADD)
Geometic
Grid

Geometric R esampiing

I /L)R/

(Mo ADD)
+

Coregsered Coreqsered

L1Gs
Temain Gcclusion -
— ETeES Termain Mask
A

Characteristics

Polynomial
Coeflcents

GCPs

DEM Do

I Measured
— — o Precsen
Residuals
P:S::" Line-of-Sight Comecton Geodetlc
: (N.ON.CS) — Stats
o Geomeic Model
Mocde] (precision)
=il
-
Li gheF roge o
)
eomer
Grid Geomefni
v Grd
| ] Cloud Cover Assessment | o
) | (AT ACCA Conftrol SeeS)
LT T
S

\LDCM



6.2 OLI Radiometry

Algorithm/Function

Characterization di

<> Intermediate output

LW = Labeled Mask

N8

CPF input

Scene Product Type
(S) scene,

(CS)Cal Site,
(ON)Of-Nadir,

(D) ALL dark,

(5h) Dark Shutter,
(Sc) Dark Scenes,
(L) Lamp,

(Q) Solar,

(Z) Solarintegration time sweep,
(Uy Lunar,

(r) yaw,

(&) All scenetypes

All stats are stored/trended separately by
Collection Type and Processing Level

OL!I Radiometric Processing Overview

—- Image and ancillary data

=P Processingflow

——  GPF, characterization data, etc.

Qutput reportfile

Specialinputfile

Coherent Moise
Characterzstion
sh)

L 4

Relative Gain
Ly, Chamcterzation
(50° Yaw)
(1]

I:l Default Flow

- =1

:_ I Mon-Default Flow

Standalone Algorithms

ENR
Characterization

Detector
Operabilty
o Characterization
] miin=sr
Nomlinea Response |
Modal ‘Characterization Relative Gain
2 Characterization
1 iHistogram
Method)

For Earth scenes, subset LORa interval prior
to radiometric processing

Bias, Trend
Hodel,

3

amp.

Statistics

e <3

Nnninali\yl | Statisties. iSiogram

Model (LUT, Characteraation | | seatistics
Functign i

L

algorithms

Bias Model Parameters (or BPF) are
computed for every imaging interval

LDCM-ADEF-001

Ingest

Version 3

A3 & LPGS

M-

Calval Toolkit

Temp. SCA
SCAOverlap it
15) SCA
| oareston  lllis.| Gain Application T

i TR :
12

s

oFy Stats
Bias
Histogram
LM3 is an input to all following

3
amp
Statistics.

Inoperable detector list is an input
to all algorithms prior to geometric

processing

FP
Temps

Bias Determination is VRP! Dx inat
for every scene processsd = ()

FICS.

Cloud Cover

()




6.3 TIRS Geometry

AlgonthmF unction T 7| Potensal AlgonthmFuncaon
(solid ouline) | (doted outine)
a

[

Characienzation DB Special image
Inputioutput

Intermediate oulput <>
2
EOUWt reportfile E cpecial inputfle

CPF input
1AS algonthm are mggered
by PGS products

Special Intermediate
Inputioutput

—
B2B
Characensics

TIRS Geometric Processing Overview

Ingest

A5 B LPGS

s

CalAsal Toolldt

—h Frocessing Flow
— Dat
— — = Lunar Onily

Ancillary Data Preprocessing

LOR Processed
Telermery

v
Maodel Line-of-Sight Mode| Creation
Farameers “)

LDCM-ADEF-001
Version 3

Scene Product Type
(oM DN adir
(CS) Cal-Sie
(M) Nadr
(4) All scene types

Geometric Model
(precision) L
Rademete Proce ssing
A
A4

Polmal

Coefficients

Line-of-Sight P clnnEllps:d _‘
& Termral
,n
& Geometric
Grd
\ 4
o —l'i -
») -
TRS LIT

Ne ADD)

Radance
Sealing Il
Factors “ﬂghﬂ

LDCM



6.4 TIRS Radiometry

Algorithm/Function

Characterization db

Intermediate output
LM = LabeledMask E
CPF input

Scene Product Type

(S) scene,

(CS)Cal Site,

(QON)YOF-Nadir,

(Sp) Space view,

(B) Blackbody,

(Z) Blackbody integration time sweep,
(U) Lunar,

(Y) yaw,

(A) All scenetypes

B
=
&
LT

‘All stats are storedfirended separately by
Collection Type and Processing Level

For Earth scenes, subsetL0Ra interval prior
to radiomstric processing

5 =

TIRS Radiometric Processing Overview

Output reportfile

Special inputfile

Gain Offset,

Backgroun:
and Dark
Res;

=p  Processingflow

Coherent Noise
Charapterization
5P

L 4

Relative Gain
Characterization
(30° Yau)
4]

i 2

d

Image and ancillary data

CPF, characterization data, etc

‘Weighted I
Spectral

Radiance

I:l Default Flow

1
1 Mon-Default Flow

Standalone Algorithms

LDCM-ADEF-001
Version 3

Ingest

IAS &LPGS

e

CallVal Toolkit

Abs. Gain,
Rel. Gain,
Gain Offsel

Bias Mode| Relative Gain
e 5
{Histogram
(Background Vethod)
— o
B
Nonlinear
Responss
Charactarzation
(Z.8.5p)
Characterization Radiometric.
Database ‘Stabiiity
‘Characterization
(B, Sg}

Nonlinearity
Model

Detector

SCAOveriap

=

Statistics

(]

Dropped Frame Saturated Fixel Responss
»|C e c rzstion ||  Linesrzation
*) @ ()
CFy 4,
Y
Histogram
Statistics
Charsctarization
LM3 iz an input to all following )
algorithms
i
Istogram Calibration
Statistics Sp)

FP
Temps:

R
Stats

Oparabiiity
Characterization

Background
Response

.

Inoperable detector list is an input
to all algorithms prior to geometric
processing

Cloud Cover
Assessment

()




LDCM-ADEF-001
Version 3

Section 7 Algorithms

7.1 Common Geometry Algorithms
7.1.1 Coordinate Systems
7.1.1.1 Coordinate System Definitions

There are ten coordinate systems used by the LDCM IAS geometric algorithms. These coordinate
systems are referred to frequently in the remainder of this document and are briefly defined here to
provide context for the subsequent discussion. They are presented in the order in which they would
be used to transform a detector and sample time into a ground position.

1. OLI Instrument Line-of-Sight (LOS) Coordinate System

The OLI LOS coordinate system is used to define the band and detector pointing directions
relative to the instrument axes. These pointing directions are used to construct LOS vectors for
individual detector samples. This coordinate system is defined so that the Z-axis is parallel to
the telescope boresight axis and is positive toward the OLI aperture. The origin is where this
axis intersects the OLI focal plane. The X-axis is parallel to the along-track direction, with the
positive direction toward the leading, odd numbered, SCAs (see Figure 6.1.1.1-1). The Y-axis
is in the across-track direction with the positive direction toward SCA01. This definition makes
the OLI coordinate system nominally parallel to the spacecraft coordinate system, with the
difference being due to residual misalignment between the OLI and the spacecraft body.

OL1 Y [Cross Track)
15EM 1.0E1 5.0E-02 0.0EH0D 506402 -1.0601 -1.56401
L A 1 A 1 _1 .E'ﬂz
Y
» » » . ("] . . L] . . ] L] . ] . . ™ . - a -
» » » ] . ] L] . . ] u L] ] I ] ™ . - - - 12602
s » " » B B w v ® . v @ " w g " . . .,
. » » » » » » [ ] . . . L] . [ ] » [ ] ™ - ™ -
[
2 g ® p ® . v w " ® g a_g a
- w 8.0603
aBand1 : . ® s 8 @ » B = " s @ " u g « . . . . ]
aBand 2 , 5 ® 2 ® P » B @ " v @ " a g . e 4 . g :
aBand 3 » » B » = B " 5 u " g g a g
a B » M -
aBand4 , » ® . ®® > » B > » = O CEr— . : w 4 003
(]
“Banas $CAR2  SCAM  SCAMS  SCAOS  SCAM0  SCM2  SCAl _
@ Band 6 0.0E+00 §
@Band7 b =
'—
«Benas SCAM  SCAO3  SCAOS  SCAOT  SCAD9  SCAIM  SCAM3 X o
«Band 9 > -—a2 a = o L 2 & a 2 52 o [ I— 4.0E-03 =
» : . . " 2 & @ s & = s a . = ., ., : 3
» » . B a a a 8 a a =& a a g . . : L =S
s " » . s ® a a 8 a & a " a a " a2 g s . - L=}
» . . s ® a a o a & a " a a I ., 8.0E-03
» : » . 8 a a =& o a & a & a g . . L ., -
» a
- w—at s & = s = = = o e 2 2 . a < 12E02
» . . a ® a o [ a a ] a a a a a - a -
= " . a a & 8 a = " a a " . . ., -
a a a
16E-02

Figure 6.1.1.1.1. OLI Line-of-Sight Coordinate System

2. TIRS Instrument Coordinate System



LDCM-ADEF-001
Version 3

The orientations of the TIRS detector LOS directions and of the TIRS scene select mirror
(SSM) are both defined within the TIRS instrument coordinate system. TIRS LOS coordinates
define the band and detector pointing directions relative to the instrument axes. These pointing
directions are used to construct LOS vectors for individual detector samples. These vectors
are reflected off of the SSM to direct them out the TIRS aperture for Earth viewing. The TIRS
LOS model is formulated so that the effect of a nominally pointed SSM is included in the
definition of the detector lines-of-sight, with departures from nominal SSM pointing causing
perturbations to these lines-of-sight. This formulation allows TIRS LOS construction to be very
similar to OLI, and is described in detail below, in the TIRS Line-of-Sight Model Creation
algorithm.

The TIRS coordinate system is defined so that the Z-axis is parallel to the TIRS boresight axis
and is positive toward the TIRS aperture. The origin is where this axis intersects the TIRS focal
plane. The X-axis is parallel to the along-track direction, with the positive direction toward the
leading SCA, SCAO02 (see Figure 6.1.1.1-2). The Y-axis is in the across-track direction with the
positive direction toward SCAOQ3. This definition makes the TIRS coordinate system nominally
parallel to the spacecraft coordinate system, with the difference being due to residual
misalignment between the TIRS and the spacecraft body.

TIRSY
1.5E-01 1.0E-01 50E02 O0OE+00 -50E02 -10E01 -15E-01
1 1 1 1 1 _5_0E_02
» ] B | | -} -]
-4 0E-02
SCA-A / SCAO03 SCA-B / SCA01
= = - — = - -3.0E-02
-2 0E-02
-1.0E02 ><
()]
Y 0.0E+00 0
-
1.0E-02
L 2 X
» Band 10 " - . 20502
" = Band 11 SCA-C/ SCAO2 3.0E02
| bBand 16 A A A 4.0E-02
DBand 17
50E-02

Figure 6.1.1.1-2. TIRS Line-of-Sight Coordinates

3. Spacecraft Coordinate System

The spacecraft coordinate system is the spacecraft-body-fixed coordinate system used to
relate the locations and orientations of the various spacecraft components to one another and
to the OLI and TIRS instruments. It is defined with the +Z axis in the Earth facing direction, the
+X axis in the nominal direction of flight, and the +Y axis toward the cold side of the spacecraft
(opposite the solar array). This coordinate system is useful during observatory integration and
prelaunch test where it is used to determine the prelaunch positions and alignments of the



LDCM-ADEF-001
Version 3
attitude control sensors (star trackers and SIRU) and instrument payloads (OLI and TIRS). The
spacecraft coordinate system is nominally the same as the navigation reference system (see
below) used for spacecraft attitude determination and control. However, for reasons explained
below, these two coordinate systems are treated separately.

. Navigation Reference Coordinate System

The navigation reference frame (a.k.a., the attitude control system reference) is the spacecraft-
body-fixed coordinate system used for spacecraft attitude determination and control. The
coordinate axes are defined by the spacecraft attitude control system (ACS), which attempts to
keep the navigation reference frame aligned with the (yaw-steered) orbital coordinate system
(for nominal nadir pointing) so that the OLI and TIRS boresight axes are always pointing
toward the center of the Earth. It is the orientation of this coordinate system relative to the
inertial coordinate system that is captured in spacecraft attitude data.

Ideally, the navigation reference frame is the same as the spacecraft coordinate system. In
practice, the navigation frame is based on the orientation of the absolute attitude sensor (i.e.,
star tracker) being used for attitude determination. Any errors in the orientation knowledge for
this tracker with respect to the spacecraft body frame will lead to differences between the
spacecraft and navigation coordinate systems. This becomes important if the absolute attitude
sensor is changed, for example by switching from the primary to the redundant star tracker
during on-orbit operations. Such an event would effectively redefine the navigation frame to be
based on the redundant tracker with the difference between the spacecraft and navigation
frames now resulting from redundant tracker alignment knowledge errors, rather than from
primary tracker alignment knowledge errors. This redefinition would require updates to the on-
orbit instrument-to-ACS alignment calibrations. So, the spacecraft and navigation reference
coordinate systems are different because the spacecraft coordinate system is fixed but the
navigation reference can change.

. SIRU Coordinate System

The spacecraft orientation rate data provided by the spacecraft attitude control system’s
inertial measurement unit are referenced to the Space Inertial Reference Unit (SIRU)
coordinate system. The SIRU consists of four rotation-sensitive axes. This configuration
provides redundancy to protect against the failure of any one axis. The four SIRU axis
directions are determined relative to the SIRU coordinate system, the orientation of which is
itself measured relative to the spacecraft coordinate system both prelaunch and on-orbit, as
part of the ACS calibration procedure. This alignment transformation is used by the IAS to
convert the SIRU data contained in the LDCM spacecraft ancillary data to the navigation
reference coordinate system for blending with the ACS quaternions.

. Orbital Coordinate System

The orbital coordinate system is centered at the spacecraft, and its orientation is based on the
spacecraft position in inertial space (see Figure 6.1.1.1-3). The origin is the spacecraft’s
center of mass, with the Z-axis pointing from the spacecraft’s center of mass to the Earth’s
center of mass. The Y-axis is the normalized cross product of the Z-axis and the
instantaneous (inertial) velocity vector and corresponds to the negative of the instantaneous
angular momentum vector direction. The X-axis is the cross product of the Y and Z-axes. The



LDCM-ADEF-001
Version 3

orbital coordinate system is used to convert spacecraft attitude, expressed as ECI quaternions,
to roll-pitch-yaw Euler angles.

YOI‘

Xec'

To Verna
Equinox

Spacecraft
Positio

Zeagi

\—Equator

Spacecraft Orbit

Earth's Axis\of Rotation

eci

Figure 6.1.1.1-3. Orbital Coordinate System

7. ECI J2000 Coordinate System

The Earth-Centered Inertial (ECI) coordinate system of epoch J2000 is space-fixed with its
origin at the Earth's center of mass (see Figure 6.1.1.1-). The Z-axis corresponds to the mean
north celestial pole of epoch J2000.0. The X-axis is based on the mean vernal equinox of
epoch J2000.0. The Y-axis is the cross product of the Z and X axes. This coordinate system
is described in detail in the Explanatory Supplement to the Astronomical Almanac published by
the U.S. Naval Observatory. Data in the ECI coordinate system are present in the LDCM
spacecraft ancillary data form of attitude quaternions that relate the navigation frame to the
ECI J2000 coordinate system.



LDCM-ADEF-001
Version 3

Earth's Axis\of Rotation

Equator
X

To Verna
Equinox

Figure 6.1.1.1-4. Earth-Centered Inertial (ECI) Coordinate System
8. ECEF Coordinate System

The Earth-Centered Earth Fixed (ECEF) coordinate system is Earth-fixed with its origin at the
Earth’s center of mass (see Figure 6.1.1.1-). It corresponds to the Conventional Terrestrial
System defined by the Bureau International de ’'Heure (BIH), which is the same as the U.S.
Department of Defense World Geodetic System 1984 (WGS84) geocentric reference system.
This coordinate system is described in the Supplement to Department of Defense World
Geodetic System 1984 Technical Report, Part 1: Methods, Techniques, and Data Used in
WGS84 Development, TR 8350.2-A, published by the National Geospatial-Intelligence Agency
(NGA)Error! Reference source not found..



LDCM-ADEF-001
Version 3

h M i i
Greenyich Mefidian| £ rth's AxiS\of Rotation

Equator

Figure 6.1.1.1-5. Earth-Centered Earth Fixed (ECEF) Coordinate System
9. Geodetic Coordinate System

The geodetic coordinate system is based on the WGS84 reference frame with coordinates
expressed in latitude, longitude, and height above the reference Earth ellipsoid (see Figure
6.1.1.1-). No ellipsoid is required by the definition of the ECEF coordinate system, but the
geodetic coordinate system depends on the selection of an Earth ellipsoid. Latitude and
longitude are defined as the angle between the ellipsoid normal and its projection onto the
equator and the angle between the local meridian and the Greenwich meridian, respectively.
The scene center and scene corner coordinates in the Level OR product metadata are
expressed in the geodetic coordinate system.



LDCM-ADEF-001

Version 3

4

Greenwich Merjdian Height
ENipsoid Normal
Latjtu
Equator ‘ Y

iLonghude

y |

Figure 6.1.1.1-6. Geodetic Coordinate System
10. Map Projection Coordinate System

Level 1 products are generated with respect to a map projection coordinate system, such as
the Universal Transverse Mercator, which provides mapping from latitude and longitude to a
plane coordinate system that is an approximation of a Cartesian coordinate system for a
portion of the Earth’s surface. It is used for convenience as a method of providing digital
image data in an Earth-referenced grid that is compatible with other ground-referenced data
sets. Although the map projection coordinate system is only an approximation of a true local
Cartesian coordinate system at the Earth’s surface, the mathematical relationship between the
map projection and geodetic coordinate systems is defined precisely and unambiguously.

7.1.1.2 Coordinate Transformations

There are eight key transformations that relate the ten coordinate systems used by the IAS geometric
algorithms. These transformations are referred to frequently in the remainder of this document and
are defined here. They are presented in the logical order in which a detector and sample number
would be transformed into a ground position.



LDCM-ADEF-001
Version 3
1. OLI-to-Navigation Reference Transformation

The relationship between the OLI instrument and navigation reference coordinate systems is
described by the OLI instrument alignment matrix. The transformation from sensor
coordinates to navigation reference coordinates is a three-dimensional rotation, implemented
as a matrix multiplication, and an offset to account for the distance between the ACS reference
and the instrument aperture. This spacecraft center of mass-to-sensor offset is measured
prelaunch and is not expected to be updated on-orbit. The ACS-to-OLI transformation matrix is
initially defined as a static (non-time varying) rotation, with improved estimates provided post-
launch. Subsequent analysis may detect repeatable variations with time, which can be
effectively modeled, making this a (slowly) time-varying transformation. The nominal rotation
matrix is the identity matrix.

2. TIRS-to-Navigation Reference Transformation

The relationship between the TIRS instrument and navigation reference coordinate systems is
described by the TIRS instrument alignment matrix. Like the OLI, the transformation from
sensor coordinates to navigation reference coordinates is a three-dimensional rotation,
implemented as a matrix multiplication, and an offset to account for the distance between the
ACS reference and the instrument aperture. This spacecraft center of mass-to-sensor offset is
measured prelaunch and is not expected to be updated on-orbit. The ACS-to-TIRS
transformation matrix measured directly prelaunch. Post-launch, improved estimates will be
provided by estimating the OLI-to-TIRS alignment and combining that with the ACS-to-OLI
alignment mentioned above. Note that any TIRS pointing offsets that are due to errors in SSM
alignment knowledge will be attributed to the overall ACS-to-TIRS alignment by the on-orbit
calibration. The nominal ACS-to-TIRS rotation matrix is the identity matrix.

3. SIRU-to-Navigation Reference Transformation

The SIRU coordinate system is related to the navigation reference coordinate system by the
SIRU alignment matrix, which captures the orientation of the SIRU axes with respect to the
navigation base. This transformation is applied to the SIRU measurements present in the
spacecraft ancillary data prior to their integration with the ACS quaternions. The SIRU
alignment is measured pre-flight and is nominally oriented with a 45-degree rotation about the
X-axis, relative to the spacecraft/navigation reference coordinate system.

4. Navigation Reference-to-Orbital Transformation

The relationship between the navigation reference and orbital coordinate systems is defined by
the spacecraft attitude. This transformation is a three-dimensional rotation matrix with the
components of the rotation matrix being functions of the spacecraft roll, pitch, and yaw attitude
angles. The nature of the functions of roll, pitch, and yaw depends on the exact definition of
these angles. The conventions adopted in the LDCM model are described below in the
Ancillary Data Preprocessing algorithm. Since the spacecraft attitude is constantly changing,
this transformation is time varying. The nominal rotation matrix consists of a latitude-
dependent rotation about the Z-axis (yaw). This “yaw-steering” is designed to compensate for
the effects of Earth rotation as spacecraft motion passes the OLI and TIRS detector arrays
over the Earth’s surface.

5. Orbital-to-ECI Transformation



LDCM-ADEF-001
Version 3
The relationship between the orbital and ECI coordinate systems is based on the spacecraft's
instantaneous ECI position and velocity vectors. The rotation matrix to convert from orbital to
ECI can be constructed by forming the orbital coordinate system axes in ECI coordinates:

P = spacecraft position vector in ECI
V = spacecraft velocity vector in ECI
Tecitorb = rotation matrix from orbital to ECI

bz =—p/ |p| (nadir vector direction)

b, = (b3 x v) / |bz x v| (negative of angular momentum vector direction)
b1 = b, x bz (circular velocity vector direction)

Teciroro = [ b1 b2 b3 ]

6. ECI-to-ECEF Transformation

The transformation from ECI-to-ECEF coordinates is a time-varying rotation due primarily to
the Earth’s rotation, but it also contains more slowly varying terms for precession, astronomic
nutation, and polar wander. The ECI-to-ECEF rotation matrix can be expressed as a
composite of these transformations:

Tecrieci =ABCD

A = polar motion

B = sidereal time

C = astronomic nutation
D = precession

Each of these transformation terms is described in more detail below in the Ancillary Data
Preprocessing algorithm. Note that LDCM uses the precession, nutation, and sidereal time
definitions from the IAU resolutions of 1997-2000 as described in U.S. Naval Observatory
Circular 179. This is a newer formulation than was used in the heritage Landsat 7 system.

7. ECEF-to-Geodetic Transformation

The relationship between ECEF and geodetic coordinates can be expressed simply in its direct
form:

e’=1-b?/a?

N =a/ (1 - e? sin’(lat))*?

X = (N + h) cos(lat) cos(lon)
Y = (N + h) cos(lat) sin(lon)
Z = (N (1 = €?) + h) sin(lat)

where:

X, Y, Z = ECEF coordinates

lat, lon, h = geodetic coordinates

N = ellipsoid radius of curvature in the prime vertical
e? = ellipsoid eccentricity squared



LDCM-ADEF-001
Version 3
a, b = ellipsoid semi-major and semi-minor axes

The closed-form solution for the general inverse problem (the problem of interest here)
involves the solution of a quadratic equation and is not typically used in practice. Instead, an
iterative solution is used for latitude and height for points that do not lie on the ellipsoid
surface.

8. Geodetic-to-Map Projection Transformation

The transformation from geodetic coordinates to the output map projection depends on the
type of projection selected. The mathematics for the forward and inverse transformations for
the Universal Transverse Mercator (UTM), Lambert Conformal Conic, Transverse Mercator,
Oblique Mercator, Polyconic, Polar Stereo Graphic, and the Space Oblique Mercator (SOM)
are given in John P. Snyder’s Map Projections — A Working Manual, USGS Professional Paper
1395.

7.1.2 Time Systems

Four time systems are of primary interest for the IAS geometric algorithms: International Atomic Time
(Temps Atomique International [TAI]), Universal Time—Coordinated (UTC), Universal Time—
Corrected for polar motion (UT1), and Spacecraft Time (the readout of the spacecratft clock, derived
from GPS time). Spacecraft Time is the time system used for the spacecraft time codes found in the
Level OR ancillary data (including image time codes). UTC is the standard reference for civil
timekeeping. UTC is adjusted periodically by whole leap seconds to keep it within 0.9 seconds of
UT1. UT1 is based on the actual rotation of the Earth and is needed to provide the transformation
from stellar-referenced inertial coordinates (ECI) to terrestrial-referenced Earth-fixed coordinates
(ECEF). TAI provides a uniform, continuous time stream that is not interrupted by leap seconds or
other periodic adjustments. It provides a consistent reference for resolving ambiguities arising from
the insertion of leap seconds into UTC, which can lead to consecutive seconds with the same UTC
time. Spacecraft time is based on GPS time which is, itself, a fixed offset from TAI. These and a
variety of other time systems, and their relationships, are described in the Explanatory Supplement to
the Astronomical Almanac, mentioned previously. The significance of each of these time systems with
respect to the IAS geometric algorithms is described below.

1. Spacecraft Time

In accordance with the LDCM Spacecraft to Ground Interface Control Document (70-P58230P,
Rev C), the LDCM spacecraft clock reports time as TAI seconds since the spacecraft (J2000)
epoch, defined as follows:

January 1, 2000, 11:59:27.816 TAI
which is the same as:
January 1, 2000, 11:58:55.816 UTC.

Epoch J2000 occurred at January 1, 2000 12:00:00 Barycentric Dynamical Time (TDB). At the
time of the J2000 epoch, Terrestrial Dynamical Time (TDT) differed from TDB by
approximately 73 microseconds (ref. Explanatory Supplement to the Astronomical Almanac).



LDCM-ADEF-001
Version 3

This small difference is ignored in the definition above, and the epoch is effectively taken to be
January 1, 2000, 12:00:00 TDT. Since TDT is defined to be TAI + 32.184 seconds, we have
11:59:27.816 TAI + 32.184 sec = 12:00:00 TDT. Furthermore, at the time of the J2000 epoch,
TAl and UTC differed by 32 accumulated leap seconds, so 11:58:55.816 UTC + 32.000 sec =
11:59:27.816 TAIl. Note from the above that the relationship between spacecraft time and TAI
is fixed but the relationship between spacecraft time and UTC changes over time, with the
offset increasing by one second each time a new leap second is declared. Note that as of the
2013 LDCM launch date, three additional leap seconds had been declared (in January 2006,
January 2009, and July 2012).

The LDCM flight software maintains the accuracy of the spacecraft clock using time data from
the on-board GPS receiver(s). The spacecraft clock is then used to time tag the spacecraft
ancillary data and to provide a timing reference for the OLI and TIRS instruments. Spacecraft
time is used to define the times at which the flight software generates filtered attitude and
ephemeris estimates based on the input GPS, star tracker, and SIRU data. These estimates
are included in the spacecraft ancillary data stream for use by ground processing. Also
included in the ancillary data are the raw SIRU measurements. Individual SIRU observations
are time tagged using a clock/counter internal to the SIRU itself, but the SIRU ancillary data
also includes SIRU time synch events that make it possible to relate the SIRU clock to
spacecraft time.

The spacecraft clock also provides time synchronization signals to the OLI and TIRS
instruments once per second. Both instruments use this one pulse per second signal to
regulate their internal clocks, thereby registering the image time codes to spacecraft time. Note
that any instrument clock rate errors will be manifested as (small) step discontinuities in the
image time codes, which correspond to the 1 PPS updates. The resulting time code
irregularities are corrected when the OLI and TIRS geometric models are created, as
described below in the OLI LOS Model Creation algorithm and the TIRS LOS Model Creation
algorithm.

. UTC

As mentioned above, UTC is maintained within 0.9 seconds of UT1 by the occasional insertion
of leap seconds. A table of leap seconds relating UTC to TAI is maintained in the LDCM
Calibration Parameter File (CPF) to support the spacecraft time to UTC conversion. To convert
spacecraft time to UTC, the number of additional leap seconds declared since the spacecraft
epoch are subtracted from the reported spacecraft seconds since epoch and the result is
added to the UTC representation of the epoch presented above. Leap second information can
be obtained from the International Earth Rotation Service (IERS) in their Bulletin C
publications.

. UT1

UT1 represents time with respect to the actual rotation of the Earth and is used by the IAS
algorithms, which transform inertial ECI coordinates or lines of sight to Earth-fixed ECEF
coordinates. Failure to account for the difference between UT1 and UTC in these algorithms
can lead to ground position errors as large as 400 meters at the equator (assuming the
maximum 0.9-second UT1-UTC difference). The UT1-UTC correction typically varies at the
rate of approximately 2 milliseconds per day, corresponding to an Earth rotation error of about
1 meter. Thus, UT1-UTC corrections should be interpolated or predicted to the actual image



LDCM-ADEF-001
Version 3
acquisition time to avoid introducing errors of this magnitude. The UT1-UTC offset, along with
the polar wander Earth orientation parameters, can be obtained from IERS Bulletin B (for
retrospective data) and Bulletin A (for predicted data). Tables of the UT1-UTC and polar
wander Earth orientation parameters are also maintained in the LDCM CPF.

4. TAl

Although the IAS algorithms do not operate directly in TAI, it underlies the definition of
spacecraft time, as noted above. As such, it can be helpful to use TAI as a standard reference
that can be related to UTC, using the CPF leap second file, and to spacecraft time, via the
constant offset, to assist IAS operations staff in anomaly resolution.

7.1.3 Scene Framing Algorithm

7.1.3.1 Background/Introduction

The LDCM scene framing algorithm uses the spacecraft ancillary data, preprocessed to perform
scaling, coordinate conversion and to repair errors, and the image timing information to determine the
locations of scene centers within the interval. It then assigns Worldwide Reference System-2 (WRS-
2) path row coordinates to these scene centers for purposes of subsequent metadata generation.

The Landsat heritage scene framing algorithm will be used to frame nadir-pointing data and to
determine the nadir path/row references for off-nadir acquisitions, but the LDCM capability to point
(roll) up to 15 degrees off-nadir will lead to data acquisitions that do not fall on the regular WRS-2
reference grid and will, in some cases, fall entirely outside the heritage WRS-2 coverage area for
acquisitions near the poles. These additional complications require adjustments to the heritage
algorithm to address both the scene definition (i.e., where do we declare the scene centers) aspect of
scene framing and the WRS-2 grid (path/row) assignment aspect of scene framing. This algorithm
addresses those requirements.

The algorithm developed here separates the scene definition and WRS-2 labeling aspects of the
scene framing problem. It also uses different logic for high-latitude (polar region) and low latitude
(non-polar) acquisitions. At high latitudes, off-nadir acquisitions will be poorly aligned with and will
sometimes fall outside of the WRS-2 grid, so the heritage (nadir) orbit-based approach to scene
center time definition is used in those areas. Using the nadir path/row for scene and interval
identification also ensures unique ids as well as consistency with planned acquisitions. Furthermore,
to help in identifying coverage of off-nadir acquisitions, especially near the poles, target WRS-2
labeling is determined and any imagery falling outside the WRS-2 grid uses special target row
numbering.

For non-polar regions, the guiding principle is to make even off-nadir scenes as consistent as
possible in coverage with the nadir acquisitions of the same region by using a "row-based" approach
to scene definition. Defining scene centers at the locations where the Operational Land Imager
(OLI)* boresight crosses the latitudes that correspond to WRS-2 row centers makes the off-nadir
scene latitude bounds align with the nadir-viewing scenes from adjacent paths. This should lead to
greater consistency in scene coverage and improve the interoperability of nadir and off-nadir data?.

! For any Thermal Infrared Sensor (TIRS) only earth acquisitions, the TIRS boresight is used.
% In contrast, framing all off-nadir data based on the spacecraft position instead of the boresight location was rejected, as
it would lead to off-nadir scenes exhibiting an along-track shift relative to the adjacent path nadir data.



LDCM-ADEF-001
Version 3

Therefore, for non-polar regions, scene path/row computation is based on the boresight Line-of-Sight
(LOS) intersection location. The basic principle in this portion of the algorithm is to treat the boresight
location as if it were a sub-satellite point. We can then compute a corresponding orbital central travel
angle and apparent descending node based on the nominal Landsat orbital inclination. The actual
orbit data are used to determine whether the scene is ascending or descending mode and the central
travel angle and descending node are adjusted accordingly. The central travel angle is used to derive
the WRS-2 row and the descending node longitude yields the (fractional) path. Since the scene
definition logic is defined by WRS-2 row crossings, for non-polar data the off-nadir scene paths will
typically be fractional and the row will be an integer. Whereas in polar areas the off-nadir scenes
target WRS-2 paths and rows will be fractional. These fractional WRS-2 path/rows will have to be
rounded to the nearest path/row that represents the data. Target WRS-2 coordinates of nadir
pointing scenes should be integers in both regions. Also, if the scene center falls too far off the
WRS-2 grid, special target row numbers will be assigned (880-88x for the North Pole and 990-99x for
the South Pole).

It’'s important to note that in the metadata the wrs_path/wrs_row values are always the nadir or orbital
path/row of the satellite (and they’re also used for the scene ids) and the target path/row is the LOS
path/row. In the non-polar regions, the target row and orbital wrs_row should be equal for nadir
viewing imagery. The target path should be between wrs_path-1 and wrs_path+1 at low latitudes but
could vary by more at higher latitudes (approaching the polar regions). In the polar region, off-nadir
target path/row will vary quite a bit from the orbital values.

7.1.3.2 Dependencies

The scene framing algorithm assumes that ancillary data for the full imaging interval with 8 seconds
of extra ancillary data before and after the imagery, is available to provide the required geometric
support data, that a Calibration Parameter File (CPF) containing Earth orientation parameters and
OLI & TIRS alignment and offset information is available, and that the image time codes are
available.

At a minimum four seconds of ancillary data are required before and after the imagery to construct
consistent attitude and ephemeris time histories for the data set in order to achieve LDCM
geolocation accuracy requirements. An additional four seconds is added as an allowance for late
starts/stops, bad/partial frames at the beginning/end, etc... Also, not all of the instrument telemetry is
actually updated in every ancillary data frame so it takes multiple (up to 4) frames to be guaranteed of
getting a fresh sample.

For calibration collects (lamp, solar, shutter, black body, deep space, etc.) the geolocation framing is
not done and a minimum of two seconds of ancillary are expected before and after the imagery.

A check to ensure the imagery is fully covered by ancillary data should be done at a minimum for all
intervals. To avoid potential framing errors a check for at least 4 seconds of ancillary data before and
after the imagery, for earth collects may be prudent. If there is insufficient ancillary data to cover the
imagery or processing results in framing errors the imagery may have to be trimmed to fit within the
available ancillary in order to process the data. A tool would have to be written to do this or ingest
updated to “trim” imagery to fit within the ancillary data.

Addendum to image trimming: In order to support mission data files from a Live Downlink (like ICs
would receive) image “trimming” is being looked at as an Ingest enhancement. Top option being
considered is to not actually remove the imagery but to indicate an interval start/stop frame that fits



LDCM-ADEF-001
Version 3
within the ancillary data, where processing would begin/finish. In that way no data is thrown away
and there could potentially be updates to “extrapolate” the extent of the ancillary such that sometime
in the future this imagery could be processed.

7.1.3.3 Inputs
The scene framing algorithm and its component sub-algorithms use the inputs listed in the following
table. Note that some of these “inputs” are implementation conveniences (e.g., using an ODL
parameter file to convey the values of and pointers to the input data).

Algorithm Inputs

ODL File (implementation)

CPF

Spacecraft TAI Epoch Time Reference

Earth orientation parameters (UT1UTC, pole wander, leap seconds)

OLI/TIRS Focal Plane Parameters

OLI/TIRS Parameters

Attitude Parameters

Orbit Parameters

WRS-2 Scene average elevation look-up file

Preprocessed Ancillary Data

Attitude Data

Attitude data UTC epoch: Year, Day of Year, Seconds of Day

Time from epoch (one per sample, nominally 50 Hz) in seconds

ECI guaternion (vector: q1, g2, g3, scalar: g4) (one per sample)

ECEF quaternion (one per sample)

Body rate estimate (roll, pitch, yaw rate) (one per sample) in
radians/second

Roll, pitch, yaw estimate (one per sample) in radians

Ephemeris Data

Ephemeris data UTC epoch: Year, Day of Year, Seconds of Day

Time from epoch (one per sample, nominally 1 Hz) in seconds

ECI position estimate (X, Y, Z) (one set per sample) in meters

ECI velocity estimate (VX, Vy, Vz) (one set per sample) in
meters/second

ECEF position estimate (X, Y, Z) (one set per sample) in meters

ECEF velocity estimate (Vx, Vy, Vz) (one set per sample) in
meters/second

LOR Data Contents

OLI Image Time Codes (one per frame)

TIRS Image Time Codes (one per frame)

Instrument-specific minimum number of frames per full scene
(0:7001,T:2801)

Instrument-specific minimum number of overlap frames per scene (0:1322
[756 FOV + 566 overlap], T:1080 [800FOV + 168 overlap+ 112
misalignment])

Number of polar region rows for nadir scene center calculations (6)

Minimum latitude for special target row numbering (82.61deg) [Highest
latitude if the roll shifts the imagery ~50% off the nadir pointing ground
coverage.]

Note that both ECI and ECEF attitude and ephemeris data are specified as inputs but the baseline
algorithm makes use of only the ECEF versions.



LDCM-ADEF-001
Version 3
7.1.3.4 Outputs

The scene framing algorithm outputs are shown in the following table.

Scene Framing Data

Number of scenes in the interval

For each scene in the interval:

Scene center time: year, day of year, seconds of day UTC

Scene start time: year, day of year, seconds of day UTC

Scene stop time: year, day of year, seconds of day UTC

Scene corner information.

OLI start/center/stop frame numbers

TIRS start/center/stop frame numbers

Assigned orbital WRS-2 path

Assigned orbital WRS-2 row

Assigned target WRS-2 path

Assigned target WRS-2 row

7.1.3.4.1 Approach Overview

Scene Framing basically consists of the following:

a.

b.

Using the ephemeris data, determine the WRS-2 orbital (i.e. nadir) range — this is also called the
“heritage method”.
Determine scene center times for each row at the focal plane boresight position (OLI: Boresight is
located between SCA7 & 8, TIRS: Boresight is located in the middle of SCA A, B, & C). This is
performed by three different methods, depending on the row identified:

i. LOS latitude crossing for non-polar rows,

ii. Nadir position for Polar Region Rows (within +/-6 rows of the poles),

iii. Zero Z-Velocity time for Polar Rows (246 or 122).
Determine each instrument’s scene center frame number based on the center time, from which
the start and stop frame numbers and times are also, determined using each instrument’s
minimum frame counts (given above).
Check and adjust scene start/stop times to ensure adequate overlap. This is mainly needed for
off-nadir collects that transition to/from the polar region rows.
From each scene’s center coordinates, determine the closest Target Path/Row. This helps
determine closest WRS-2 coverage for off-nadir imaging. Also, for extremely high latitude, special
target row numbers are used (88x and 99x) to help identify imagery viewed “off the WRS-2 grid”
around the poles.
Scene metadata (corner points, sun azimuth/elevation, etc) are then completed.

7.1.3.5 Prototype Code

None

Note: The functionality described in this algorithm relies on geometric processing capabilities
described in other LDCM/OLI/TIRS algorithm description documents. These algorithms will be
referenced as necessary.

7.1.3.5.1 Scene Sizes

Full scene declaration is based on a minimum number of frames (OLI: 7001, TIRS:2801), anything
less is considered a partial scene. See Appendix A: Scene Sizing Background for an overview of the



LDCM-ADEF-001
Version 3

fields-of-view and calculations to define the number of OLI and TIRS frames in a full WRS-2 scene.
The LDCM imaging instruments (OLI and TIRS) are push broom instruments with significantly large
fields-of-view in the along-track direction. In addition, both instruments have redundant detectors
which can be selected for active imaging. Since it is desirable to have a constant minimum frame size
for Level-0 scenes to be considered “full”, the minimum scene frame size for each instrument is set
large enough to always ensure enough coverage to produce full Level-1 scenes which are
approximately 180km in length. There’s also a one second tolerance on the boresight alignment
between the two instruments.

The standard length of a full Level-0 OLI scene is given by:

OLI Sample Rate 4.236 Milliseconds / frame
OLI FOV SCA 1.7 Degrees (along-track) The angle required
Staggering for the leading and trailing imaging bands
of the SCASs to cover a point on the ground
relative to the center of the focal plane.
See Appendix A
OLI FOV Frames 756 Frames (along-track)
24 Seconds (center-to-center)
WRS-2 Scene 5664 Frames (center-to-center)
WRS-2 Scene Overlap | 566 Frames (5% top & 5% bottom)
6230 Frames (180km coverage, 5664+566)
6986 Frames (adjusted for FOV, 6230+756)
LO Scene Length 7001 15 frame cushion added (6986 + 15)
29.67 Seconds for 7001 frames
Minimum OLI Overlap | 1322 Frames (756 FOV + 566 overlap)
(Starti-to-Stop;.1)

Similarly, the standard length of a full Level-0 TIRS scene is given by:

TIRS Sample Rate 14.286 Milliseconds / frame
TIRS FOV SCA 5.0 Degrees (along-track) The angle required
Staggering for the leading and trailing imaging bands
of the SCASs to cover a point on the ground
relative to the center of the focal plane.
See Appendix A
TIRS FOV Frames 800 Frames (along-track, includes science
rows)
24 Seconds (center-to-center)
WRS-2 Scene 1680 Frames (center-to-center)
WRS-2 Scene Overlap | 168 Frames (5% top & 5% bottom)
1848 Frames (180km coverage, 1680+168)
2648 Frames (adjusted for FOV, 1848+800)
2760 Frames (adjusted alignment tol,
LO Scene Length 2648+112)
2801 41 frame cushion added (2760 + 41)
40.01 Seconds for 2621 frames




LDCM-ADEF-001
Version 3

Minimum TIRS Overlap | 1080 Frames (800 FOV + 168 overlap + 112
(Starti-to-Stop;.1) align)

7.1.3.5.2 Note that if the instrument start and stop times between OLI and
TIRS are not properly synchronized there could be multiple partial
scenes at the beginning and/or ending of the interval. Based on
the start time values above TIRS collects should start/end roughly
5 seconds before/after OLI [(40.01 — 29.67)/2 =5.17]

7.1.3.5.3 Partial Scenes

A Full WRS-2 scene product with approximately ten percent overlap is defined as 180km in along-
track direction. Additionally, the Field-of-View (FOV) offset for each instrument and the boresight
misalignment is included in the minimum number of frames to ensure coverage. For OLI, this is 7001
frames and for TIRS, this is 2801 frames. Partial WRS-2 scenes are defined as anything less than a
Full WRS-2 scene. For partial scenes, the scene center is computed from the image frame closest to
the nominal WRS-2 scene center. In other words; for partial scenes with more than half a scene in
length, the computed scene center is the “actual” WRS-2 scene center. For partial scenes with less
than half a scene in length, the computed scene center is the point within the imagery which is closest
to the WRS-2 scene center. For short partials that are at the start of an interval this would be at the
center point of the first line and for partials that are at the end of an interval this would be the center
point of the last line.

In addition, Landsat 8 has two instruments which are commanded on/off separately so there may be
times when one sensor is collecting data over a WRS-2 coverage area where the other instrument is
not. One likely scenario is that the instrument start and stop times between OLI and TIRS are not
properly synchronized. e.g.) TIRS start time is more than 5 seconds before/after OLI. This could
lead to “incidental” partials. Incidental partials are considered partials because the data from one of
the instruments is a partial or does not exist; while data from the other instrument is full or partial over
the same WRS-2 path/row. The table below defines when “incidental” partials would occur:

OLI TIRS Scene

Full Full Full

Full Partial Partial (incidental)
Full None Partial (incidental)
Partial Full Partial (incidental)
Partial Partial Partial

Partial None Partial (incidental)
None Full Partial (incidental)
None Partial Partial (incidental)

Scenes are classified as partials (incidental) even though one of the instruments may have the full
WRS-2 coverage, with overlap. Currently, products are not made from incidental partials as a
combined scene collect is considered a partial. In the future, a combined scene collect with a full
scene for one instrument and partial for the other may be separated such that a product can be made
from the full scene.

Partials from an OLI Only or TIRS Only collect are not considered incidental partials.



LDCM-ADEF-001
Version 3

7.1.3.5.4 Minimum Scene Overlap
WRS-2 scenes are defined to be at least 180km long which means approximately 10% overlap from
scene to scene. Due to the pushbroom FOV nature of the Landsat 8 instruments, the start of a scene
in Level-0 format needs to begin much earlier and end much later than past satellites to achieve 10%
overlap in all bands on all Sensor Chip Assemblies (SCA). As illustrated in the following diagram, the
minimum overlap requires 5% from each scene and ¥z the FOV SCA staggering from each scene
(See Appendix A Figure 9). In other words, the minimum number of frames for overlap is 10% of the
center-to-center frame requirement + the total FOV SCA staggering requirement. In addition, to
assure minimum overlap of scenes from different orbits, the alignment counts are factored into the
minimum overlap for TIRS.

For OLI, the center-to-center requirement is 5664 frames, making the 10% minimum overlap
requirement 566 frames and the FOV SCA staggering is 756 frames. So the minimum start-to-stop
overlap is 566+756 = 1322 frames.

For TIRS, the center-to-center requirement is 1680 frames, making the 10% overlap requirement 168
and the FOV SCA staggering is 800 (including the allowance for science row deselect). Plus, the OLI-
to-TIRS alignment adjustment is 112 frames. This makes the minimum start-to-stop overlap
168+800+112 = 1080 frames.

r— " /- |7
| 1%FOVaddedtonext |- FOV Helgnt
I oot |
__Rowboundary | o] 10% Overlap
5% add_ed l
to previous

| I
|
I % FOV added to previ,ou,s,,,,\l{ ,,,,,,,,,,,,,,,,, I FOV Height
| |
| |

Figure 3 Minimum Overlap

7.1.3.5.5 Boresight Center

When the scene centers are determined from the LOS model, a boresight center is approximated
from LOS projections of nearby detectors.



LDCM-ADEF-001
Version 3

For OLI, the panchromatic band is the innermost band in the FOV and SCA 7 & 8 are the closest
SCAs to the center. So, the left-most detector on SCA 8 and the rightmost detector on SCA 7 are
used to average the latitude and longitude values obtained from the LOS projection. In the following
diagram, the red dot marks the estimated boresight center using the projection of the two black
detectors.

SCA7

Figure 2 OLI Boresight Center

For TIRS, since the focal plane is made up of an odd number of SCAs, the boresight is first estimated
by averaging two LOS latitude/longitude values from the outside two SCAs, then averaging the result
with the center detector from the center SCA. In the following diagram, the blue dot represents the
average of the outside two detectors and the red dot shows the average with the center SCA’s
detector, yielding the boresight center estimate.

Note that the boresight estimate will vary with the actual rows selected for each SCA and will vary
with latitude. Near polar collects use an alternate method defined below.



LDCM-ADEF-001
Version 3

SCAA SCAB
:
SCAC

Figure 3 TIRS Boresight Center

7.1.3.6 Procedure
The primary tasks performed by the scene framing algorithm are to:

1. Load and preprocess the ancillary ephemeris and attitude data, and determine the image
interval time span.

a. The spacecraft ephemeris and attitude data from the interval ancillary data stream is
quality checked and prepared for subsequent use by the ancillary data preprocessing
algorithm. This algorithm is described in the Ancillary Data Preprocessing Algorithm
Description Document (ADD).

b. Load the interval image time codes for both instruments, if present, and determine the
imaging interval start and stop times.

c. Verify that the preprocessed ancillary data completely covers the imaging interval and
this is at least 8 seconds of ancillary data before and after the image data. Note: 8
seconds is expected operationally but 4 seconds may be sufficient for processing.

2. Compute/ldentify Orbital WRS-2 path/row (also known as nadir path/row) coverage within the
imaging interval.

a. Determine the ancillary time closest to the beginning of imaging, but not after. The
ancillary time should be the latest of ACS, Ephemeris, and IMU times and the imaging
time should be the earliest of OLI and TIRS image start times.

b. Determine the ancillary time closest to the end of imaging, but not before. The ancillary
time should be the earliest of ACS, Ephemeris, and IMU times and the imaging time
should be the latest of OLI and TIRS image end times.

c. Use the heritage nadir scene framing algorithm Determine Nadir WRS-2 Path/Row Sub-
Algorithm below and the preprocessed ancillary data to compute the starting and ending
fractional WRS-2 scene path/row values. The rounded values define the Orbital WRS-2
path/row span of the interval. These orbital path/rows are used for scene and interval




LDCM-ADEF-001
Version 3
ids even for off-nadir imaging and for determining how the scene center times are
computed.

d. Loop through the identified rows and use the heritage nadir scene framing algorithm
Determine Nadir WRS-2 Path/Row Sub-Algorithm below and the preprocessed ancillary
data to find the times where the fractional WRS-2 scene row values are whole numbers,
i.e. where frow = int(frow). These times define the initial nadir scene center times for
each row.

e. Note: Because the above calculations are only done based on ancillary and ancillary
data is captured before and after the imagery, the first and last scene center times
calculated might fall outside the imagery collected. These center times are adjusted
below.

3. Adjust scene center times within the rows found. The initial nadir scene center times are
adjusted in the following ways:

a. For non-polar region rows (Orbital WRS-2 rows from 5 through 115 and from 129
through 239)*; the scene center times are adjusted based on the OLI boresight*
location.

i. Define the OLI boresight line-of-sight vector as: [0 0 1]"

ii. Use the preprocessed ancillary data to interpolate the ECEF attitude quaternion
at the scene center time as described below in the Interpolate Attitude
Quaternion Sub-Algorithm. Note that the scene center ECEF ephemeris will
already have been computed by the nadir scene framing algorithm.

iii. Project the OLI boresight, to the WGS84 ellipsoid surface (i.e. using height = 0),
using the algorithm described in the Forward Model, Get LOS Sub-Algorithm
section of the “OLlI Line-of-Sight Projection/Grid Generation Algorithm
Description Document”.

Note:
e Using the nadir scene center time, found above, allows us to bypass step
a).1. Find Time,
e Defining the OLI boresight LOS in step i. above takes the place of a).2.
Find LOS,

e The quaternion interpolation of step ii. above replaces a).3. Find Attitude,

e Steps a).4. through a).7. of the Get LOS sub-algorithm can then be used
to compute the geodetic latitude and longitude of the boresight
intersection point.

iv. Compute the (fractional) WRS-2 path/row corresponding to the boresight
latitude/longitude using the Convert Geodetic Latitude/Longitude to WRS-2
Path/Row Sub-Algorithm described below.

® Note that these rows were selected as the boundary of the polar region because a 15 degree roll at this latitude
corresponds to approximately a one row offset from nadir.
* Use the TIRS boresight if OLI isn’t present.



LDCM-ADEF-001
Version 3
v. Round the row to the nearest integer. This is the adjusted row to determine a
new scene center time from.

vi. Use the Search for Scene Center Time Sub-Algorithm described below to adjust
the scene center time until the boresight intersection point matches the scene
center adjusted row.

vii. Declare the scene center time to be the new scene center.

b. For polar rows (Orbital WRS-2 rows122 and 246); the zero-crossing time of the z-
component of the velocity vector from the ECEF ephemeris is the new scene center
time. Note that this method will probably be close, if not the same, to the initial nadir
scene center time, but is preferred implementation for accuracy and historical purposes.

c. For polar region rows (six rows adjacent to either side of the polar rows: Orbital WRS-2
rows 1-4, 116-121, 123-128, 240-245 and 247-248); the initial nadir scene center times
will not be adjusted due to the large amount of overlap of path/rows at the pole. The
new scene center time will be set to the nadir scene center time found above.”

4. Compute the scene extents

a. Determine the scene center frames for each instrument. If the first scene’s center is
before the start of imagery, a negative frame number is estimated. If the last scene’s
center is after the end of imagery, a frame number larger than the interval length is
used. These are temporary values used in the next step.

b. Compute scene start and stop frames:
I. start frame; = max( 0, center_frame; — (NOMINAL_SIZE/2)).
ii. stop frame; =
min(total_frames, center_frame; + (NOMINAL_SIZE/2)).

c. Adjust the first and last scene center frames to be within the actual imagery, if needed
(i.e. if first center < 0, make it O and if the last center > interval last frame, make it the
last frame).

d. Check for adequate overlap between scenes and adjust if needed:

overlap = scene stop frame; - scene start frame;,;.

if( overlap < minimum overlap )
delta = (minimum overlap - overlap)
start diff = (delta) / 2;

if( start diff >= scene start frame;,; )
start diff = scene start frame;,;;

scene start frame;,; —-= start diff;
stop diff = (delta - start diff);
scene stop frame; += stop diff;

if ( scene stop frame; > total frames )
scene stop frame; = total frames;

® Note that the number of adjacent rows may have to be adjusted if the polar region boundary scene sizes do not frame to
the proper sizes.



LDCM-ADEF-001
Version 3
e. Check to see if the first and last partials are completely within the overlap regions of
adjacent scenes. If so, remove them.

f. Set the scene start, stop, and center times to the corresponding frame times.
g. Determine which scenes are partial or full.
I. length = stop frame; — start frame;;

ii. if (length < NOMINAL_SIZE)
scene is PARTIAL
else
scene is FULL

iii. Note that for combined (OLI + TIRS) collects, both lengths must be greater than
or equal to the corresponding nominal sizes for the scene to be FULL.

. Check the complete list of scene center times to ensure that no two adjacent scene centers
are more than 48 seconds apart (two times the normal scene center-to-center interval). If any
two consecutive scene centers exceed this limit error out (the polar region will need to be
enlarged). This should never happen.

. Compute the corresponding target WRS-2 path/row coordinates and lat/long for each adjusted
scene center time in the interval (new scene center times from step 3-4 above).

a. Define the OLI boresight line-of-sight vector as: [0 0 1]"

b. Use the preprocessed ancillary data to interpolate the ECEF attitude quaternion at the
adjusted scene center time as described in the Interpolate Attitude Quaternion Sub-
Algorithm below.

c. Project the OLI boresight, to the WGS84 ellipsoid surface (i.e. using height = 0), using
the algorithm described in the Forward Model Get LOS Sub-Algorithm section of the
“OLlI Line-of-Sight Projection/Grid Generation Algorithm Description Document”.

Note:

i. using the adjusted scene center time, found above, allows us to bypass step
a).1. Find Time,

ii. defining the OLI boresight LOS in step i. above takes the place of a).2. Find LOS,
iii. the quaternion interpolation of step ii. above replaces a).3. Find Attitude,

iv. Steps a).4. through a).7. of the Get LOS sub-algorithm can then be used to
compute the geodetic latitude and longitude of the boresight intersection point.

d. Compute the (fractional) WRS-2 path/row corresponding to the boresight
latitude/longitude using the Convert Geodetic Latitude/Longitude to WRS-2 Path/Row
Sub-Algorithm described below. Round the values to the nearest integers. This is the
target path/row.

e. Determine if the scene center position is off the WRS-2 grid. For collections near the
poles, it is possible to look off-nadir toward the pole, into an area not defined by the
WRS-2 grid. If the geodetic latitude just calculated is above 82.61 degrees this is
considered as being off the WRS-2 grid and a special naming convention is used. To
allow unique target row assignments, the North Pole area is assigned a row of 88n, and
the South Pole area is assigned a row of 99n, where n is a sequential number. Up to



LDCM-ADEF-001
Version 3
seven scenes can be covered in these areas; therefore, the scenes are assigned target
row numbers 880 to 886, or 990 to 996 in the interval.

Corner Coordinate Framing

The corner points represent the WRS-2 extent of a scene on the ground in north-up latitude and
longitude coordinates. Using the scenes starting and ending frames, found above, a Line-of-Sight is
calculated at the first and last pixel in those frames (use the Forward Model Get LOS Sub-Algorithm
section of the “OLI Line-of-Sight Projection/Grid Generation Algorithm Description Document” and
“TIRS Line-of-Sight Projection/Grid Generation Algorithm Description Document). Due to the layout
of the bands and SCAs on the focal plane, there are along-track offsets between bands within each
SCA, along-track offsets between even and odd SCAs, and a reversal of the band ordering in
adjacent SCAs. To create more uniform image coverage, the leading and trailing imagery associated
with these offsets is “trimmed” based on an active area bounds.

To account for band offsets the frames and pixels from the outer most bands should be used in the
corner calculations. For the OLI corner calculations, the Cirrus band is used and similarly the 10.8
pum band is used for TIRS. Using the outer most bands insures that every band is bounded by the
corner coordinates. To account for the SCA offsets a minbox representing a rectangular active image
frame is defined that excludes the excess trailing imagery from even SCAs and the excess leading
imagery from odd SCAs.

OLI Active Image Area

The active image area (minbox) for OLI is computed by constructing 8 critical SCA corner points from
the Cirrus band, labeled C1 through C8 in the figure below. Points C1 and C2 define the top edge of
the active area, C3 and C4 the right edge, C5 and C6 the bottom edge, and C7 and C8 the left edge.
Note that points C1 and C8 are the same (the upper left corner of SCA01) as are points C4 and C5
(the lower right corner of SCA14). Use the forward model to project these 8 line/sample locations to
object space, computing the latitude/longitude coordinates for each point. The average elevation
over the WRS-2 path/row is used as a rough adjustment from the WGS84 ellipsoid in the elevation
parameter of the forward model for the 8 line/sample to latitude/longitude calculations. Use the WRS-
2 Scene average elevation look-up file to determine the average elevation for the path/row being
processed.



LDCM-ADEF-001
Version 3

C3
Cl!CS _i
C2}..

UL UR

SCAO3 SCAQ04 SCAOM SCAO4 SCAL( SCAL3 SCA14
SCAOQ] SCAOT SCAQH SCAO SCAQOY SCA1] SCA1S

LL LR
—g S £0—
C6 cajcs

C7

Figure 4 Active OLI Image Area

The remainder of the calculations and determination of the minbox framing of the active OLI image
area is described in the Calculating the Active Image Area section of the “OLI Line-of-Sight
Projection/Grid Generation” ADD. The results of these calculations should be the latitude and
longitude of the four bounding corner points represented by the blue points in Figure 4.

TIRS Active Image Area

The active image area (minbox) for TIRS is computed by constructing 8 critical SCA corner points
from the 10.8 um band, labeled C1 through C8 in the figure below. This figure depicts the current
understanding of the TIRS field of view orientation with respect to object space, but the algorithm
described here will work so long as the SCAs are numbered sequentially across the field of view, in
either direction. Points C1 and C2 define the top edge of the active area, C3 and C4 the right edge,
C5 and C6 the bottom edge, and C7 and C8 the left edge. Note that points C4 and C5 are the same
(the lower right corner of SCAO01) as are points C6 and C7 (the lower left corner of SCA03). Use the
forward model to project these 8 line/sample locations to object space, computing the
latitude/longitude coordinates for each point. The average elevation over the WRS-2 path/row is
used as a rough adjustment from the WGS84 ellipsoid in the elevation parameter of the forward
model for the 8 line/sample to latitude/longitude calculations. Use the WRS-2 Scene average
elevation look-up file to determine the average elevation for the path/row being processed.



LDCM-ADEF-001
Version 3

Figure 5 Active TIRS Image Area

The corner point assignments are made by examining the SCA across-track and along-track
Legendre coefficients to determine: 1) whether SCAOQL is on the left (+Y) or right (-Y) side of the
scene; 2) whether even or odd SCAs lead; and 3) whether the sample number increases in the —Y or
+Y direction. If the across-track Legendre constant term (coef y0) for SCAOL is positive then it is the
left-most SCA and SCAOQ3 is the right-most. If the along-track Legendre constant term (coef_x0) for
SCAO0L1 is greater than that for SCA02, then the odd SCAs lead. If the across-track Legendre linear
term (coef_y1) for SCAO1 is negative, then the sample number increases in the —Y direction.

Having determined the orientation of the SCAs, assign the top edge to the left-most leading SCA
upper left (UL) corner and the right-most leading SCA upper right (UR) corner, the right edge to the
right-most SCA UR and lower right (LR) corners, the bottom edge to the right-most trailing SCA LR
corner and left-most trailing SCA lower left (LL) corner, and the left edge to the left-most SCA LL and
UL corners. As shown in the figure, for the TIRS: C1 = SCAO02 (left-most leading SCA) UL, C2 =
SCAO02 (right-most leading SCA) UR, C3 = SCAO01 (right-most SCA) UR, C4 = SCAO01 (right-most
SCA) LR, C5 = SCAO01 (right-most trailing SCA) LR, C6 = SCA03 (left-most trailing SCA) LL, C7 =
SCAO03 (left-most SCA) LL, and C8 = SCAO03 (left-most SCA) UL. Note that these assignments are
based on the current TIRS SCA ordering of SCA-B = SCA01, SCA-C = SCA02, and SCA-A = SCAO03,
and could change if the SCA numbering system is revised. If this were to happen, the change would
be reflected in the Legendre coefficients, so the logic described here would automatically
compensate.



LDCM-ADEF-001
Version 3

The remainder of the calculations and determination of the minbox framing of the active TIRS Image
area is described in the Calculating the Active Image Area section of the “TIRS Line-of-Sight
Projection/Grid Generation” ADD. The results of these calculations should be the latitude and
longitude of the four bounding corner points represented by the blue points in Figure 5.

As depicted in Figure 6, the lower corner coordinates correspond to the leading edge (last line) of a
scene, and upper coordinates correspond to the trailing edge (first line) of a scene from the outer
most bands on the SCAs. Leading/Trailing edges are based on which SCA/Band/Detectors are
first/last in relation to the direction of flight (ascending or descending) relative to the ground.

Upper Lower
Left

Upper
Lower Left

Left

_ Right .
Descending LRQW:{ Ascending
ig

Figure 6 Leading/Trailing Scene Edge

Determine Nadir WRS-2 Path/Row Sub-Algorithm
The ephemeris data are used to define the nadir WRS-2 path & row. The following routine is
called to determine the nadir pointing position of the satellite for Landsat Scene IDs and to
determine scene center times for polar region rows. This is also known as the “heritage nadir
scene framing algorithm”.

Inputs:
e ecef pos, ecef vel (Ephemeris State Vector in Earth-Centered, Earth-Fixed coordinates).
e CPF WRS-2 Constants:
o Long_Path;_Rowego (longitude of Path 1 at Row 60 = -64.6 deg).
WRS_Cycle Days (number of days per WRS cycle = 16 days)
WRS_Cycle_Orbits (number of orbits per WRS cycle = 233 orbits)
Scenes_Per_Orbit (number of scenes or rows in each orbit = 248 rows)
Descending_Node_Row (row number of equator when descending = 60)
Omega_E (WGS-84 Earth's inertial rotation rate, rad/sec)

0O O O O O

Outputs:
e Fractional WRS-2 Orbital Path & Row.

Procedure:
1. Convert the CPF path 1 row 60 longitude to radians.

Long _ Path, _ Row,,* 7
180

Long _ Path, _ Row, =



LDCM-ADEF-001

Version 3
2. Compute Earth angular rate (solar to account for orbital precession).
Earth _ Spin _ Rate = _Zr
24*3600

3. Compute the spacecraft angular rate.

2* z*WRS _Cycle _Orbits
WRS _Cycle _Days*24*3600

SC_Ang _Rate =

4. Normalize the incoming position and velocity vectors.

mag = \/ecef _pos,” +ecef _ posy2 +ecef _ pos,”

ecef 0S
sc_ poslX — é
mag
ecef _ pos,
SC_pos, =—————
mag
ecef 0S
SC_ pos, = ¢
mag

Adjust the velocity vector by earth’s inertial rotation rate. NOTE: if the ephemeris data has
already been preprocessed, the ADP output ECEF ephemeris can be used and this velocity
adjustment isn’t needed.

new _vel., =ecef _vel, —omega_e>*ecef _ pos,
new _vel., =ecef _vel +omega_e*ecef _ pos,
new_vel., =ecef _vel,

and normalize.

mag = \/new_velxz +new _vel,* +new_vel,”

new _vel,

sc_vel, =————=
mag

new _vel,

sc_vel, =————
mag

new _vel,

sc_vel, =————=*
mag

5. Compute the spacecraft angular momentum R xY .

ang _mo =|sc_ posxsc_ Vel



LDCM-ADEF-001
Version 3
6. Compute the vector to the descending node

ang _mo,

dnode, = - -
\/ang _mo,” +ang _mo,
—ang_mo

dnode, = ?— X -
\/ang _mo,” +ang _mo,

dnode, =0

and normalize.

mag = \/dnodexz +dnode,” + dnode,”

dnode, = dnode,
mag

dnode

dnode, = Y
mag

dnode, = dnode,
mag

7. Compute the central travel angle from the descending node and the spacecraft position vector.
temp = dnode x sc__ pos
mag = temp|
s =sign(temp e ang _mo)
central _angle = atan2(mag * s, (dnode e sc _ pos))

8. Compute the row number from the central angle.
central _angle
2*r
frow < 0.5 = frow = frow+ Scenes _Per _Orbit
frow > (Scenes _ Per _Orbit +0.5) = frow = frow — Scenes _ Per _ Orbit

frow = Descending _ Node _Row +

*Scenes _ Per _Orbit

9. Compute the longitude of the instantaneous descending node.
inst _ dnode _ long = atan 2(—ang _mo,,ang _mo, )

central _angle * Earth _ Spin _ Rate

long _origin =inst _dnode _long +
SC _ Ang _ Rate




LDCM-ADEF-001
Version 3

10.Compute the path number from the longitude of row 60.
Long _Pathl Row60—long _origin
2*r
_ i * 9%
(0.5- Descending _ Node _ Row) 2 71') — fpath = fpath —16
Scenes _ Per _Orbit
(fpath < 0.5) = fpath = fpath + WRS _ Cycle _ Orbits

*WRS _ Cycle _Days+1

fpath =

(central _angle <

NOTE: the (0.5 — Descending_Node_Row) is the distance in WRS rows from the start of the
path (row 0.5) to the descending node (row 60).

11.Make sure the row number is in range.

while ( frow < 0.5)
fpath = fpath — 16;
frow = frow + Scenes_Per_Orbit;
while ( frow > Scenes_Per_Orbit + 0.5)
fpath = fpath + 16;
frow = frow — Scenes_Per_Orbit;

12.Make sure the path number is in range.
while (fpath<1)
fpath = fpath + WRS_Cycle_Orbits;
while ( fpath > WRS_Cycle_Orbits )
fpath = fpath — WRS_Cycle_Orbits;
frow = frow — Scenes_Per_Orbit;

Interpolate Attitude Quaternion Sub-Algorithm
Given a sequence of time stamped quaternions, (q;, t;), and a time, to, at which the interpolated

guaternion is desired:
1. Step through the quaternion time stamps to identify the latest quaternion time, t;, which is less

than or equal to the interpolation time of interest, to.
2. Calculate the quaternion Aq that rotates q; to gj+1:
AQ =Qi+1 Q'
where: ('; is the conjugate of quaternion q;. See the quaternion conjugation and quaternion
multiplication sub-algorithms below.
3. If the sign of the fourth element of Aq, Aq,, is negative, change the sign of the entire
guaternion.
4. Decompose the Aq quaternion into its angle (6) and axis of rotation (x) form:
sin(06/2) = sqrt( Agi1*Ag; + Ag2*AqQ2 + AQs*AQs )
cos(0/2) = Agq
6 = 2 * atan( sin(6/2) / cos(6/2) )



LDCM-ADEF-001
Version 3
X = [ Agy/sin(6/2) Aq/sin(6/2) Aqs/sin(6/2) ]
noting that if sin(6/2) = 0 then x = 0.
5. Linearly interpolate the angle 6, at time to:
00 =0 *(to - t)) / (ti+1 - 1)
6. Construct the quaternion corresponding to the new rotation angle 6o:
Aqo = [ sin(6/2) ™ cos(60/2) ]
7. Apply the new delta quaternion to g; to compute qo, the quaternion at time to:
Jo = Aqo g

Quaternion Conjugation Sub-Algorithm
The conjugate q', of a quaternion g, is computed by inverting the sign on the first three elements
of q:

9 =[-01 -G2 -O3 Qa]

Quaternion Multiplication Sub-Algorithm
The product ¢, of quaternions a and b is given by:

Ci1= asby+azh, -axbs+a; by

02:-a3b1+a4b2+a1b3+a2b4

C3= axby -aiby+asbs+azby

cs=-a1 by -ayb, -a3b3+a4b4
Note that quaternion multiplication does not commute. Also note that other formulations of
guaternion multiplication are possible. Any consistent formulation should work in the interpolation
equations above.

Convert Geodetic Latitude/Longitude to WRS-2 Path/Row Sub-Algorithm
Given a boresight geodetic latitude ¢, and longitude A, and the corresponding spacecraft velocity Z
component V; (to determine whether the scene is ascending or descending):
1. Compute the geocentric latitude 6, from the geodetic latitude ¢, and the WRS84 ellipsoid semi-
major (a) and semi-minor (b) axes:

6 =atan(tan( ¢ ) * b/a*b/a)

2. Use the geocentric latitude and the nominal Landsat orbital inclination (i = 98.2 degrees) to
compute the longitude offset to the apparent descending node:

Aot =asin(tan( 0 ) /tan (m-1i))

This calculation should include a test to ensure that the argument of the asin function is in
the range -1 to +1, clipping the value to this range if necessary (e.g., for latitudes outside
the standard WRS-2 range).

3. Calculate the central travel angles for both the descending and ascending cases:

CTAq = asin( -sin( 0 ) /sin (r - i) )
CTA.= - CTA

As above, the range of the asin function argument should be clipped to the range -1 to +1.
4. Compute the allowable range of central travel angles on a given WRS path as:

min CTA = (0.5 - 60.0)/248 * 2nt
max CTA = (248.5 - 60.0)/248 * 2n



LDCM-ADEF-001
Version 3
5. Add or subtract 2r to the descending and ascending central travel angles to bring them within
the allowable range.

If (CTAG<min CTA) CTA'4=CTAq + 21
Else if (CTAq>max CTA) CTAy=CTAy-2n
Else CTA'4 = CTAy
If (CTAL<min CTA) CTA', =CTA, + 21
Else if (CTA; > max CTA) CTA, =CTA,-2n
Else CTA', = CTA,
6. Compute the Earth rotation angles from the adjusted central travel angles:

ALg = CTA'4 * Earth rotation rate / Spacecraft angular rate
Alq = CTA', * Earth rotation rate / Spacecraft angular rate

7. Calculate the apparent descending node longitudes for the descending and ascending cases:

DNAg = A - Aoff + Alg
DN}La:}L+7\,oﬁ+n+A}La

8. Select the descending or ascending case:

If (Vz>0.0)
CTA' =CTA,
DNXA = DNA,

Else
CTA =CTAY4
DNA = DNAg

9. Compute the (fractional) WRS-2 row number from the central travel angle:
row = row at equator (60) + CTA'/ 2n * number of rows (248)
10.Compute the (fractional) WRS-2 path number:

Lo = (longitude of path 1 at equator) - DNA + 2n
|f(7uo>2ﬁ)7\,o:7uo-27'c
path = Lo * number of paths (233) / 2z + 1

Search for Scene Center Time Sub-Algorithm
Given a scene center time (tp) and the corresponding WRS-2 row (rowp) and a target (integer) row
(rowr):

1. Compute the nominal WRS-2 row rate:

row rate = number of rows (248) / orbital period
2. Compute the row error:

row error = rowp - rowr

3. If the absolute value of the row error is less than 0.005, use the current scene center and exit
the search.

4. Save the previous scene center time and row:

rowL = rowgp



LDCM-ADEF-001
Version 3
L=t

5. Adjust the scene center time:
to = to - (row error) / (row rate)
Interpolate the spacecraft ephemeris and attitude at the new scene center time.
7. Project the boresight to the WGS84 ellipsoid at the new scene center time.

8. Compute the WRS-2 path/row at the boresight latitude/longitude as described above. This
yields a new value of rowo.

9. Compute the WRS-2 row rate:
row rate = (rowp - row,) / (to - t.)
10. Continue the iterations at step 2. above.

Note: This sub-algorithm is only used for non-polar scenes so the row transition from 248 to 1 is not
an issue.

7.1.3.7 Maturity

The Scene Framing Algorithm is an attempt to document how OLI and TIRS scene sizes were
derived and how to determine scene centers, orbital WRS-2 path/rows and target WRS-2 path/rows.
In addition it addresses where to calculate corner point information to form the coordinates of the
WRS-2 frame for the metadata. This algorithm relies on invoking all or part of the ancillary data
preprocessing and LOS projection algorithms.

Being that this document was written before launch, most of the OLI and TIRS instrument information
is known for the supporting calculations. However, there may be changes due to results from various
instrument and spacecraft tests. As more data is received and analyzed, appropriate changes will be
made as necessary.

7.1.3.8 Notes

Significant algorithm assumptions and notes, including those embedded in the text above, are:

1. Ancillary data for the full imaging interval with 8 seconds of extra before and after the interval is
available to provide the required geometric support data. A minimum of 4 seconds of extra
ancillary data before and after may be sufficient for processing.

2. In the polar transition regions (rows 5, 115, 129, and 239) there may be larger scenes framed
in situations where the spacecratft is rolled "away" from the pole (see step 2.d. of the main
algorithm procedure above). In this configuration the distance between scene centers can
exceed 5664 OLI multispectral image frames. This occurs because the OLI is looking toward
the equator where the rows are growing farther apart in latitude, while the spacecratft is flying
at higher latitude where the rows are closer together in latitude. It thus takes more than a
nominal row of flight time for the boresight to traverse one row of latitude. Other possible
approaches would be to move the transition region toward the equator by 5 rows for intervals
that are rolled toward the equator. The approach adopted here is to allow the off-nadir LORp
scenes to be somewhat longer than nadir scenes.



LDCM-ADEF-001
Version 3
7.1.3.8.1 Appendix A — Scene Sizing Background

OLLI:

The bore sight of the OLI telescope is parallel to the spacecraft +Z axis which means it will be nadir
pointing. The 14 OLI SCAs are arranged in two rows of seven as shown in Figure 7. The Field of
View (FOV) of the telescope is 15 degrees in the cross track direction and 1.7 degrees in the along-
track direction.

P
;
r

1.7 deg

| # ®
I .
——————— ———
— —
— —

| 4 #| %

a1 mlh Fal mlr- Fal mlﬁ

Figure 7 OLI SCA Layouts and FOV

The telescope bore sight will traverse one scene (i.e. Scene center to scene center) in about 24
seconds given the nominal orbit rate.

WRS_Cycle Days = 16 days
WRS_Cycle_Orbits = 233
Scenes_Per_Orbit = 248
Seconds_Day = 86400

Calculate Spacecraft Angular Rotational rate:

_ 2 *m* WRS_Cycle_Orbits — 0.0010591049 radians
@= WRS_Cycle_Days * Seconds_Day seconds

Calculate time between successive WRS rows:

WRS_Cycle_Days * Second_Day

At=
WRS_Cycle_Orbits * Scenes_Per_Orbit

= 23.923577 seconds

The size of an OLI scene, in lines, can be calculated with respect to the bore sight with the following
calculations. Rounding the above number to 24 seconds the number of OLI lines between
successive WRS rows is:

OLI_Frame_Rate = 236 lines / second

, At ,
OLI Lines = OLI Frame Rate 5664 Lines




LDCM-ADEF-001
Version 3
In addition, by definition of Landsat WRS products, WRS scenes are overlapped with the previous
row by 5% and the next row by 5%. The total number of OLI lines needed for the overlap is then
10%.

At

OLI Lines = OLI Lines + 0.1 = OLI Frame Rate = 6230 Lines

However the LDCM OLI bands within each SCA are staggered with respect to the bore sight.
OLI Band Parallax

Time= Time=t,

m

I m - Leading SCA band
j s m - Trailing SCA band
Spacecraft l

Motion

Actual Pixel
Location

Topographic
Surface

WGS84
Ellipsoid
Surface

Leading
Band pixel
location

Figure 8 OLI Band/SCA Band Parallax

This staggering represents a time difference between when the leading set of detectors within a SCA,
for a given band, image the start and end of the WRS scene and when the trailing set of detectors
within a SCA, for a given band, image the start and end of the WRS scene.



LDCM-ADEF-001
Version 3

OLI SCA/band Staggering

T. T
_,..._x" \ / Dlrec.tlon of
/N flight
/ \ V.
. i ¢| t
At time T, leading LOS /
views the start of WRS. [
At time T, trailing LOS
views start of WRS. Trailing SCA/ band
Need time dt=T,-T, € € —_—
~./ Startof WRS
w Leading SCA/ band

= b, =8.5°

Figure 9 OLI SCA/Band Staggering

The extra time required for the leading and trailing imaging bands of the SCAs to cover a point on the
ground relative to the center of the focal plane will vary with position in orbit and scene elevation.
Extra lines of imaging will be required at the beginning and end of the interval, or about 1.5 seconds
of extra data on each side. This means that imaging must start at least 1.5 seconds prior to the
telescope bore sight reaching the leading edge of the first scene in the desired interval and must
continue for at least 1.5 seconds after passing over the trailing edge of the last scene of an interval.
This will assure that all bands in all SCAs have completely imaged the scene.

Looking at the OLI Legendre LOS polynomials and determining the leading and trailing look vectors,
the difference in radians/degrees is:

Leading_LOS = 1.436414e-02 radians = 0.8230046 degrees
Trailing_LOS =-1.444101e-02 radians = -0.8265414 degrees

The difference between these two numbers represents a field of view of 1.65 degrees. Rounding this
to 1.7 degrees (0.85 leading and 0.85 trailing) we can determine the amount of time needed to pad
either the leading or trailing acquisition of the OLI WRS scene in terms of time. If the maximum
satellite altitude is present at the poles and the minimum satellite altitude is present at the equator the
minimum and maximum number of lines needed in the LOrp can be calculated.

a = 0.85 degrees



LDCM-ADEF-001
Version 3
Orbital _Radius = 7083445,719 meters
Semi_Major_Axis = 6378137.0 meters
Semi_Minor_Axis = 6356752.3142 meters
Major_Alt = Orbital_Radius — Semi_Major_Axis = 705308.72 meters
Minor_Alt = Orbital_Radius — Semi_Major_Axis = 726693.40 meters

The ground distance covered at these two altitudes represented on the earth are found as:

GD_Major = Major_Alt * tana = 10464.234 meters
GD_Minor = Minor_Alt * tana = 10781.505 meters

These ground distances represent an angular orbit change of:

GD_Major
Semi_Major_Axis

&= atan( ) = 0.00164063 radians

GD_Minor
Semi_Minor_Axis

€= atan( ) = 0.00169607 radians
Using the spacecraft angular rotational rate gives a delta time due to the staggering of the SCAs as:
dt = 2 = 1.5 and 1.6 seconds

Using the OLI frame rate the number of OLI lines needed for this (maximum) delta time is:
A Lines SCA Staggering = 1.6 seconds * OLI_Frame_Rate = 378 Lines

The total number of lines needed within a OLI WRS scene is then

Total Lines = (nominal size + 5% overlap + SCA staggering)
OLI Lines = OLI Lines + 2 xA Lines SCA Staggering = 6986 Lines

For convenience and ease of use the final number of OLI lines will be rounded to 7001 lines. An odd
number is used so that a center line is found and the same number of before and after lines (3500)
are used to define the entire LOR scene.

In terms of time, a single scene will take about 29.6 seconds:

1.6 sec (378 lines for leading edge SCA coverage)
+ 1.2 sec (5% overlap on leading edge)
+ 24.0 sec (time for WRS scene)
+ 1.2 sec (5% overlap on trailing edge)
+ 1.6 sec (378 lines for trailing edge SCA coverage)
= 29.6 sec (29.67 for 7001 lines)

TIRS:

The TIRS SCAs are larger and farther apart than the OLI SCAs which will require TIRS to begin
imaging earlier, and continue for a longer duration than OLI in order to completely image a scene.
The along-track of the TIRS instrument is 4.95 degrees (Figure 10) requiring an additional 9.43
seconds (4.714 seconds for the leading and trailing edges) of imaging to assure all bands in all three



LDCM-ADEF-001
Version 3
SCAs have completely imaged the scene. The same logic used for calculating the number of OLI
lines can be used for TIRS.

Optical
| | axis | |
4.95 Deg ©

I —

Figure 10 TIRS Layout and FOV

The size of a TIRS scene, in lines, can be calculated with respect to the bore sight with the following
calculations. The number of TIRS lines between successive WRS rows:

TIRS_Frame_Rate = 70 lines / second

At
TIRS Li = = 1680 Li
mes TIRS Frame_Rate tnes

In addition, by definition of Landsat WRS products, WRS scenes are overlapped with the previous
row by 5% and the next row by 5%. The total number of TIRS lines needed for the overlap is then
10%.

At
TIRS Line = TIRS Li 0.1 = 1848 Li
e tne + * TIRS Frame_Rate tnes

Looking at the TIRS Legendre LOS polynomials and determining the leading and trailing look vectors,
the difference in radians/degrees is:

Leading_LOS = 4.623841e-02 radians = 2.65 degrees
Trailing_LOS =-3.989761e-02 radians = -2.29 degrees

The difference between these two numbers represents a field of view of 4.94 degrees. Rounding this
to 5 degrees (2.7 leading and 2.3 trailing) we can determine the amount of time needed to pad either
the leading or trailing acquisition of the TIRS WRS scene in terms of time. If the maximum satellite



LDCM-ADEF-001
Version 3
altitude is present at the poles and the minimum satellite altitude is present at the equator the
minimum and maximum number of lines needed in the LOrp can be calculated. Using the spacecraft
angular rotational rate gives a delta time due to the staggering of the SCAs as:

dr = 4.92 seconds (maximum)
Using the TIRS frame rate the number of TIRS lines needed for this (maximum) delta time is:

A Lines SCA Staggering = 5 seconds * TIRS_Frame_Rate = 350 Lines

This delta is further extended by 50 lines to include the possible use of the secondary, or science,
rows. The total number of lines needed within a TIRS WRS scene is then

Total Lines = (nominal size + 5% overlap + SCA staggering + 50 science)
TIRS Lines = TIRS Lines + 2 x (4 Lines SCA Staggering + 50) = 2648 Lines

In terms of time, a single scene will take about 37.8 seconds:

5.0 sec (350 lines for leading edge SCA coverage)
+ 0.7 sec (50 lines to include science rows)
+ 1.2 sec (5% overlap on leading edge)
+ 24.0 sec (time for WRS scene)
+ 1.2 sec (5% overlap on trailing edge)
+ 0.7 sec (50 lines to include science rows)
+ 5.0 sec (350 lines for trailing edge SCA coverage)
=37.8 sec

To ensure TIRS fully covers OLI additional lines should be added to account for any misalignment
between the OLI and TIRS bore sights (which has a one second tolerance) and OLI to ACS
alignment, any biases present in the pointing of the Scene Select Mirror, etc. Also, the above
calculations use nominal values, pre-launch information, and rounding liberties which should be taken
into consideration.

The TIRS number of lines can also be calculated based on the number of OLI lines to ensure full
coverage of the TIRS data with OLI data. The number of TIRS lines can be found by first scaling the
OLI number of lines needed to cover the 180km scene (6230 lines) by the ratio of the nominal line
sample rates of OLI-to-TIRS:

Z nes = nes x
l ! 236 HZ

= 1848 Lines

This number then needs to be adjusted for the TIRS leading and trailing SCA/band staggering. From
the above TIRS calculations this value is 700 lines. Another 112 lines are needed for the alignment
tolerances and 100 lines to include the science rows. The total number of lines needed within a TIRS
WRS scene that will fully cover the OLI data is then:

TIRS lines = 1848 + 700 + 100 + 112 = 2760 Lines

For convenience and ease of use the final number of TIRS lines will be rounded to 2801 lines. An odd
number is used so that a center frame is found and the same number of before and after frames
(1400) are used to define the entire LOR scene.



LDCM-ADEF-001
Version 3
This is equivalent to 40.01 seconds of TIRS data to cover the 29.67 seconds of OLI data. This
means TIRS imaging will need to start/end approximately 5.2 seconds before/after OLI to ensure
adequate coverage.

From the calculations listed above the size of the OLI will be 7001 lines (multispectral) and the size of
the TIRS will be 2801 lines (thermal).

7.1.3.8.2 Appendix B — Comparison of Partial Scene Definitions

The Level-Ora DFCB for Landsat 7 has the following discussion of partial scenes:

For a partial scene with more than half a scene length data, the computed "actual" scene
center is also expected to happen in the proximity of the nominal WRS scene center. The
"actual" scene center for a greater than half a scene length partial scene may also be
computed from the available actual PCD and indexed to actual data in the band file. For a
partial scene with less than half a scene length data, the scene center may have to be
computed from extrapolated* ephemeris (no actual PCD may be available from the
subinterval). The computed "imaginary" scene center for such a partial scene (less than half a
scene) is still determined in the proximity of the nominal WRS scene center, but there will not
be any actual band data in the subinterval band file for which to relate the scene center. The
computed "imaginary" scene center for a partial scene with less than half a scene length data
is indexed to an "imaginary scan" (non-existent scan 0) in the band file.

* For LDCM, extrapolation of ancillary data beyond the existing ancillary/ephemeris was not provided and/or is not
possible. The above method will not work for LDCM so it was decided that the scene center would actually
represent the center of the partial (although the implementation currently takes the first or last line in the scene
closest to the WRS-2 center. A future release will address this difference).

The current LMDD definition for LDCM partial scenes is:
FULL = Full WRS scene - the standard 180 x 185km WRS size.

PARTIAL = Partial WRS scene - less than full and includes the scene center, or greater than
half and includes the scene center.

The definition provided in CCR#598 reads:
PROPOSED: "...less than a full scene that is not covered by overlap."
RATIONALE FOR CHANGE
-provide consistency with heritage Landsat
-have all scene metadata available in the Inventory
-enable future ability to handle adhoc requests for partial scenes in Subsetter
The current DFCB definition for partial scenes is:

Full — A full WRS scene product with approximately ten percent overlap is defined as 180km.
For OLI, this is 7001 frames (~28.86-meter MS lines) and for TIRS, this is 2801 frames
(~86.91-meter lines).

Partial — Considered less than a full scene.

Scene Center - The computed "actual" scene centers are from the image frame closet to the
nominal WRS scene center



LDCM-ADEF-001
Version 3

7.1.4 Ancillary Data Preprocessing Algorithm

7.1.4.1 Background/Introduction

The ancillary data preprocessing algorithm prepares the ancillary data provided by the spacecraft in
the wideband data stream for use by subsequent geometric algorithms. This includes quality checking
the incoming data to identify and remove outliers, applying scale factors from the CPF to convert the
relevant ancillary data fields to engineering units, and processing the spacecraft attitude and
ephemeris data to construct consistent attitude and ephemeris time histories for the data set. The
baseline assumption is that the attitude and position/velocity estimates produced by the spacecraft
will be sufficiently accurate to achieve LDCM geolocation accuracy requirements. If this is the case,
only basic quality checking and smoothing operations will be required. Since the ancillary data stream
will also include the raw observable data used by the spacecraft to construct its attitude and
ephemeris estimates, more sophisticated processing using the raw star tracker and SIRU data to
construct a “definitive” attitude data set, and/or using the raw GPS pseudo-range and carrier phase
observables to compute a “definitive” ephemeris data set, would be possible. These enhanced
capabilities are currently considered a risk reduction contingency that would not be implemented
unless needed.

The content and structure of the spacecraft ancillary data is defined in the Space to Ground Station
Interface Control Document. This document clarifies several uncertainties regarding formats,
coordinate systems, and sampling rates that required assumptions to be made in earlier versions of
this algorithm description. For example, the rate at which the integrated spacecraft attitude estimates
are provided was initially undecided. Had the integrated spacecraft attitude estimate quaternions
been provided at a lower rate than the SIRU data, those estimates would have required densification
using the raw SIRU data and its associated calibration parameters, status flags, and on-board bias,
alignment, and scale estimates. Since the degree of smoothing that the SIRU measurements will be
subjected to in the on-board attitude filter is, as yet, unknown, this algorithm still assumes that the raw
SIRU measurements will be used to ensure that high frequency content is preserved. The Smooth
Euler and SIRU sub-algorithm will be used to perform this data blending and to replace quaternions
flagged as outliers.

This algorithm was originally intended to support only imaging intervals that would be suitable for
Level 1 processing — primarily Earth-view and lunar acquisitions. Subsequently, it was decided that
ancillary data preprocessing would be valuable in other cases, particularly solar calibration intervals.
Since these intervals tend to be quite short (only a few seconds) some special logic was added to
allow processing to proceed under these conditions. These adjustments, mainly to the SIRU
processing logic, are noted in the appropriate locations below.

7.1.4.2 Dependencies

The ancillary data preprocessing algorithm assumes that ancillary data for the full imaging interval
with (nominally) 4 seconds of extra data before and after the interval, is available to provide the
required geometric support data, that a CPF containing the scale factors needed to convert the
ancillary data to engineering units is available, and that the quality thresholds needed to detect and
remove or repair outliers are provided either in the CPF or as processing parameters.



LDCM-ADEF-001
Version 3
7.1.4.3 Inputs

The ancillary data preprocessing algorithm and its component sub-algorithms use the inputs listed in
the following table. Note that some of these “inputs” are implementation conveniences (e.g., using an
ODL parameter file to convey the values of and pointers to the input data; including data set IDs to
provide unique identifiers for data trending).

Algorithm Inputs

ODL File (implementation)

CPF File Name

Relevant CPF contents:

Ancillary data engineering unit conversion factors

SIRU to ACS alignment matrix

SIRU engineering unit conversion factors

Leap Second Table

Ancillary data thresholds and limits

Orbital Radius Limits (hominal and max excursion)

Ephemeris Angular Momentum Limits (nominal and max excursion)

Quaternion normalization outlier threshold (max difference from 1)

Level OR Data Directory and File Root Name

Relevant Level OR spacecraft ancillary data contents:

S/C time-tagged inertial to body quaternion estimate

S/C time-tagged ephemeris estimate

SIRU sampling delay (latency) estimate (see note #10)

SIRU clock synchronization times — S/C clock

SIRU clock synchronization times — SIRU clock

SIRU time-tagged delta-angles

SIRU status flags

Output Preprocessed Ancillary Data File Name

Acquisition Type (Earth, Lunar, Stellar, Cal) (optional, defaults to
Earth)

Trending on/off switch

WRS Path/Row (for trending)

Geometric Work Order Common Characterization ID (for trending)

Work Order ID (for trending)

7.1.4.4 Outputs

The ancillary data preprocessing algorithm outputs are shown in the following table. It is important to
note that the algorithm outputs are independent of the details of SIRU/attitude data processing. Nor
would the outputs change in the event that any contingency definitive attitude and/or ephemeris
capabilities are required. The ability to provide a stable interface at the output of this algorithm is a
large part of the motivation for separating out these ancillary data validation and conversion
preprocessing operations from the model creation logic.

Preprocessed Ancillary Data

Attitude Data

Attitude data UTC epoch: Year, Day of Year, Seconds of Day

Time from epoch (one per sample, nominally 50 Hz) in seconds

ECI2ACS quaternion (vector: q1, g2, g3, scalar: g4) (one per
sample)

ECEF2ACS quaternion (one per sample)

Body rate estimate (roll, pitch, yaw rate) (one per sample) in
radians/second

Roll, pitch, yaw estimate (one per sample) in radians




LDCM-ADEF-001
Version 3

Ephemeris Data

Ephemeris data UTC epoch: Year, Day of Year, Seconds of Day

Time from epoch (one per sample, nominally 1 Hz) in seconds

ECI position estimate (X, Y, Z) (one set per sample) in meters

ECI velocity estimate (VX, Vy, Vz) (one set per sample) in
meters/second

ECEF position estimate (X, Y, Z) (one set per sample) in meters

ECEF velocity estimate (Vx, Vy, Vz) (one set per sample) in
meters/second

Trending Data

WRS Path/Row

Acquisition Date/Time

Geometric Common Characterization ID

Work Order ID

Ephemeris data start UTC time (year, day of year, seconds of day)

Number of ephemeris data points

Number of out of limit ephemeris points

Attitude data start UTC time (year, day of year, seconds of day)

Number of attitude data points

Number of out of limit attitude data points

7.1.4.5 Options
Trending On/Off Switch

7.1.4.6 Prototype Code

Input to the executable is an ODL file; output is a HDF5 formatted preprocessed ancillary data file.
Status messages and sample trending outputs are written to standard output. An ancillary data ASCII
log file is also created to capture messages regarding detected data problems.

The prototype code was compiled with the following options when creating the test data files:
-g -Wall =02 -march=nocona -m32 —mfpmath=sse —msse2

The following text is a brief description of the main set of modules used within the prototype with each
module listed along with a very short description. It should be noted that not all library modules are
referenced in the explanations below. The modules within the main “ancillary” directory of the
prototype are discussed and any library modules that were determined to be important to the
explanation of either results, input parameters, or output parameters.

ancillary — Main procedure that retrieves the input parameters (using getpar), invokes the
oli_run_preprocessing library module to perform ancillary data processing, and performs the final
trending data output.

getpar — Retreives the user-provided ODL parameters.

oli_run_preprocessing — Library routine that manages the output ancillary log file (anc.log), and
invokes other library routines (see below) to load and process the spacecraft ancillary data from the
Level OR input.

oli_ancillary_log_open — Opens the anc.log output file.



LDCM-ADEF-001
Version 3
oli_get_header_from_IOr — Library routine that reads the LOR line headers to determine the
scene start and stop times.

oli_get_ephemeris_from_I0r — Library routine that loads the ephemeris data from the input
Level OR data, quality checks the ephemeris using radius magnitude and angular momentum
tests, corrects timing jitter (if any) in the ephemeris sample times, filters the ephemeris using a
gravitational potential model, and creates the output ephemeris in both ECEF and ECI
coordinates.

I8 correct_ephem_time — Library routine that corrects timing jitter by comparing time
differences to the corresponding position differences divided by the velocity.

I8 kalman_smooth_gps — Library routine that uses a Kalman filter to smooth the
ephemeris ensuring consistency with an Earth geopotential model.

geo_earth_second_partial x — Compute gravitational acceleration for an
ephemeris state vector, in the X direction.

geo_earth_second_partial_y — Compute gravitational acceleration for an
ephemeris state vector, in the Y direction.

geo_earth_second_partial_z — Compute gravitational acceleration for an
ephemeris state vector, in the Z direction.

geo_ec2ic — Convert ECEF to ECI.
geo_ic2ec — Convert ECI to ECEF.

exx_calc_gha — Compute Greenwich apparent sidereal time (GAST), and the
corresponding precession and nutation angles at the specified time.

exx_precession — Apply the precession rotation to the input EC1J2000 vector to
convert it to ECI mean of date (ECIMOD).

exx_nutation — Apply the nutation rotation to the input ECIMOD vector to convert
it to ECI true of date (ECITOD).

XXX_rotatez — Apply the GAST rotation (including UT1-UTC offset) to convert
ECITOD to ECEF of date (true pole).

exx_polar_motion — Apply the polar motion correction to convert ECEF of date to
WGS84/mean ECEF (mean pole).

oli_get_attitude from_IOr — Library routine that loads the attitude quaternion and SIRU data
from the Level OR input, windows the data to ensure that it falls within the ephemeris data
interval, and creates an integrated output attitude data stream in both roll-pitch-yaw and
guaternion form. This unit has been modified to support processing without SIRU data if the
SIRU time synchronization process (see process_siru_times below) fails.



LDCM-ADEF-001
Version 3
get_siru2rpy — Construct matrix to convert 4 SIRU channel measurements to 3
orthogonal (roll-pitch-yaw) attitude measurements. Used only if SIRU processing is
included.

process_siru_times — Process the SIRU clock and sync codes to create spacecraft
epoch times for all SIRU samples. Used only if SIRU processing is included.

I8 iru2acs — Library routine that applies the SIRU to spacecraft alignment correction
(from the CPF) to convert SIRU data to the attitude control system coordinate system.
Used only if SIRU processing is included.

I8 sc_attitude — Library routine that converts ECI quaternions to roll-pitch-yaw using
ephemeris data.

I8 init_iru — Library routine that removes orbital motion, which is no longer simply a
pitch thanks to off-nadir pointing and yaw steering, from the SIRU data for Earth
acquisitions, using the ECI ephemeris. Used only if SIRU processing is included.

I8 kalman_smooth_iru — Library routine that blends quaternion-derived absolute roll-
pitch-yaw with SIRU-derived roll-pitch-yaw rates using a Kalman filter, to construct an
integrated attitude data stream. Used only if SIRU processing is included.

I8 _movesat — Library routine that Lagrange interpolates the ephemeris data at the
desired time.

geo_eci2orb — Library routine that constructs the ECI-to-orbital rotation matrix from an
ephemeris state vector.

euler2quat — Converts a rotation matrix to a quaternion.

oli_ancillary_log_close — Closes the anc.log output file.

trend_anc_to_database — Dummy routine to write the collected trending data to standard output. This
would be replaced by a database call in the operational implementation.

7.1.4.7 Procedure

The primary tasks performed by the ancillary data preprocessing algorithm are to:

7. Preprocess the ancillary ephemeris data:

a.
b.
C.

Load the spacecraft ephemeris data from the interval ancillary data stream.
Validate the ephemeris points using orbital radius and angular momentum thresholds.

Convert the ephemeris time codes from spacecraft time to a UTC time epoch at the first
ephemeris data record time.

Correct any time jitter in the ephemeris data samples.
Repair any bad ephemeris points by interpolation/propagation.



LDCM-ADEF-001

Version 3

Perform a coordinate conversion to provide the ephemeris in both Earth Centered Earth
Fixed (ECEF) and Earth Centered Inertial (ECI) of epoch J2000.0 coordinates.

I. Convert the incoming ECEF ephemeris state vectors to ECI J2000.

ii. Convert the ECI J2000 state vectors back to ECEF, removing the effects of Earth
rotation from the velocity vectors, as described below.

8. Preprocess the ancillary attitude data:

a.
b.

Load the spacecraft attitude data from the interval ancillary data stream.

Validate the quaternion estimates by computing the magnitude of each and comparing it
to 1.

Window the attitude data to ensure that the attitude data are completely within the
ephemeris data interval.

Convert the attitude time codes from spacecraft time to a UTC time epoch at the first
attitude data record time.

Process the raw SIRU data time stamps to compute sample times relative to the
spacecraft clock (if SIRU processing required). SIRU processing is suppressed if this
process fails due to the lack of a valid SIRU time synchronization event in the ancillary
data interval.

Convert the raw SIRU integrated angle counts to angular rates (if SIRU processing
required and not suppressed).

Rotate the SIRU data to the ACS coordinate system (if SIRU processing required and
not suppressed).

Correct the SIRU data for the effects of orbital motion (Earth-view images only, lunar
and stellar acquisitions are left in ECI). Only performed if SIRU processing is required
and not suppressed.

Convert the quaternions to roll, pitch and yaw using the ECI ephemeris data.

Filter the SIRU and quaternion-derived roll, pitch, and yaw values to generate an
integrated roll, pitch, yaw and roll-rate, pitch-rate, yaw-rate attitude sequence at the full
SIRU data rate. NOTE: This step will only be used if SIRU data processing is required.
If SIRU data processing is not required or is suppressed, attitude estimates flagged as
outliers will be replaced by linear interpolation.

Convert the roll, pitch, yaw values to ECI quaternions using the ECI ephemeris data.

Convert the roll, pitch, yaw values to ECEF quaternions using the ECEF ephemeris
data.

9. Create the output ephemeris and attitude data set containing:
a. Attitude Data

I. Attitude interval UTC epoch as: Year, Day of Year, Seconds of Day.

ii. Attitude sample time offsets from the UTC epoch (in seconds) — one per sample.
There will nominally be 50 samples per second.

iii. Body/ACS to ECI quaternions (vector part g1, g2, g3 and scalar part g4) — one
set per sample.



LDCM-ADEF-001

Version 3

iv. Body/ACS to ECEF quaternions (vector part g1, g2, g3 and scalar part g4) — one
set per sample.

v. Body inertial rotation rates (roll rate, pitch rate, yaw rate) in radians/second — one
set per sample.

vi. Roll, pitch, and yaw in radians — one set per sample.
b. Ephemeris Data
I. Ephemeris interval UTC epoch as: Year, Day of Year, Seconds of Day.

ii. Ephemeris sample time offsets from the UTC epoch (in seconds) — one per
sample. There will nominally be one sample per second.

iii. ECI X, Y, Z position in meters — one set per sample.
iv. ECI X, Y, Z velocity in meters/second — one set per sample.
v. ECEF X, Y, Z position in meters — one set per sample.

vi. ECEF X, Y, Z velocity in meters/second — one set per sample. Note that these
are actually ECI velocities rotated into the ECEF coordinate system, not true
ECEF velocities which would include Earth rotation velocity.

Steps 1.a., 2.a. and 3 above are input/output functions and are not described further here. The
remaining steps are described in greater detail in the sub-algorithms below.

Convert Spacecraft Time Code to UTC

The convert spacecraft time code to UTC is a general purpose sub-algorithm that is used by the more
specific ancillary data preprocessing sub-algorithms below. Spacecraft time codes are TAI (Temps
Atomique International or International Atomic Time) offsets from the J2000 epoch. Since TAIl and
UTC differ only by leap seconds, the conversion to UTC amounts to a leap second correction. The
spacecraft (J2000) epoch UTC date/time is hard coded (in a #define statement) to prevent it being
changed inadvertently. See note #6 for more explanation.

1.

2.

oo

Load the leap second table from the CPF. The leap second table is represented as the date
that each leap second since 01 January 1972 was declared.

Scan the leap second table and compute the number of leap seconds prior to the J2000
spacecraft epoch.

Scan the leap second table and compute the number of leap seconds prior to the current
spacecraft date/time. This is done by converting the spacecraft time code (TAl offset from
J2000) to UTC (without any leap second correction) and then using the resulting UTC date to
determine the number of leap seconds.

Subtract the leap second total for the spacecraft J2000 epoch (result of step 2) from the leap
second total for the time code (result of step 3) to compute the number of leap seconds from
the spacecraft epoch to the current spacecraft time. The resulting number of leap seconds
since J2000 is stored the first time it is computed and used in each subsequent time code
to/from UTC conversion operation.

Subtract the number of leap seconds since J2000 from the current spacecraft time code.
Add the adjusted time code to the UTC date/time for the spacecraft J2000 epoch to yield the
UTC date/time corresponding to the spacecraft time code.

ECI to/from ECEF Coordinate Transformation



LDCM-ADEF-001
Version 3
The transformation from ECI of epoch J2000 (mean equator and equinox of J2000.0) to ECEF
(WGS84) coordinates is a time-varying rotation due primarily to the Earth’s rotation, but it also
contains more slowly varying terms for precession, astronomic nutation, and polar wander. The ECI-
to-ECEF rotation matrix can be expressed as a composite of these transformations:

Tecefeci =A B CD

A = polar motion

B = sidereal time

C = astronomic nutation
D = precession

Polar Motion

The polar wander correction performs the transformation from the Earth's true spin axis (in the
Terrestrial Intermediate Reference System) to the mean pole (in the International Terrestrial
Reference System, or ITRS, here taken to be identical to WGS84). The polar motion
corrections are tabulated in the Calibration Parameter File. The corrections for the current day
are looked up from the CPF table and applied as described in section 6.5.2 of:

Kaplan, George H., United States Naval Observatory Circular No. 179, “The IAU Resolutions
on Astronomical Reference Systems, Time Scales, and Earth Rotation Models - Explanation
and Implementation”, U.S. Naval Observatory, Washington, D.C., October 20, 2005. This
document will henceforth be referred to as Circular 179. This transformation is implemented
using the wobble function in the NOVAS C3.1 library provided by the Naval Observatory.

Sidereal Time

The sidereal time correction performs the transformation from the inertial true-of-date system
(true equator and equinox of date) to the Earth fixed true-of-date (true pole or terrestrial
intermediate reference) system. It applies the polar rotation due to Greenwich Apparent
Sidereal Time (GAST) as described in Circular 179. We use the “Equinox-Based” approach
described in the Circular and implemented in the sidereal_time function of NOVAS C3.1. Note
that the sidereal time computation includes the time correction from UTC to UT1 for the current
day. The “current day” would be defined by the data set UTC epoch (rather than being
evaluated for each ephemeris or attitude point) to avoid the possibility of introducing leap
seconds in the middle of an imaging interval. This correction is tabulated in the CPF along with
the polar wander corrections.

Nutation

The nutation correction performs the transformation from the inertial mean-of-date system
(mean equator and equinox of date) to the inertial true-of-date system through nutation angles.
The nutation model is based on the IAU 2000 theory of nutation as described in Circular 179
and implemented in the nutation function of NOVAS C3.1.

Precession

The precession correction transforms the inertial of epoch J2000.0 system to the inertial mean-
of-date system. The precession model is based on the IAU 2000 definition as described in
Circular 179 and implemented in the precession function of NOVAS C3.1. Note that we do not
apply the (small) frame bias correction defined in Circular 179 because our target inertial
coordinate system is the inertial system of epoch J2000 (ECI1J2000.0) rather than the
Geocentric Celestial Reference System (GCRS) described in the Circular.



LDCM-ADEF-001
Version 3

This transformation rotates a vector from the ECI J2000.0 system to the Earth fixed (WGS84) system.
For example, an ECIJ2000 position vector is converted to ECEF as follows:
Xecet = Tecefleci Xeci = A B C D Xei

When working with ephemeris state vectors containing both position and velocity terms, there can be
ambiguity in the treatment of the velocity terms when converting between Earth fixed and inertial
coordinates. This ambiguity arises because the transformation is itself time varying. Taking the time
derivative of the equation above yields:

Xecef = Tecef /eci ><eci + Tecef /eci ><eci

The second term captures the time-varying effect of the transformation itself. The time varying effects
of precession, nutation, and polar motion transformations are negligible when compared to the orbital
motion of a spacecraft, but the sidereal time transformation contributes a significant effect. Keeping
this in mind and expanding Tecerieci abOVe yields:

X« =ABCDX_, + ABCDX,,
Where the B matrix is defined as:
- sin(GAST) @ cos(GAST) 0
B=|-w cos(GAST) -’ sin(GAST) 0
0 0 0

With: o = Earth rotation rate in precessing reference frame
GAST = Greenwich apparent sidereal time

ecef

For useful figures and additional explanation of this transformation see: DMA TR8350.2-A,
“Supplement to the Department of Defense World Geodetic System of 1984 Technical Report — Part
I: Methods, Techniques, and Data Used in WGS 84 Development”, Defense Mapping Agency (now
National Geospatial Intelligence Agency), 1 December 1987.

This equation shows that the ECEF velocity is composed of the ECI velocity rotated into the ECEF
coordinate system (the first term) plus the effect of Earth rotation (the second term). Note that Earth
rotation is modeled by the rate of change of the sidereal time transformation (B ) applied to the (ECI
true-of-date) position vector.

Whether or not the second term (Earth rotation) is included in the ECI to ECEF velocity
transformation depends upon the intended purpose. The original ECEF ephemeris data received from
the spacecraft contains velocity estimates that include the Earth rotation effects (i.e., “true” ECEF
state vectors). The Earth rotation term must therefore be taken into account when converting these
state vectors to ECI J2000. This is the coordinate system conversion that is used to accomplish step
1.f.i above. For most applications within the geometric model, however, we are only interested in the
velocity vector as a direction in inertial space (e.g., when using position and velocity to define the
orbital coordinate system which is the attitude control system reference). In this case, we only want
the first term — the inertial velocity rotated to ECEF coordinates. We therefore, rotate the ECI J2000
ephemeris state vectors back to “pseudo” ECEF coordinates without including the Earth rotation term.

To summarize, the ECI/ECEF coordinate system transformations applied to the incoming ephemeris
data from the ancillary data file are:



LDCM-ADEF-001
Version 3

ECEF to ECI:
Xeci = DT CT BT AT xecef
X, =D'C"B" AT (X, ~ABCDX,,)
Noting that the A, B, C, and D matrices are orthogonal so that their inverses are equal
to their transposes.

ECI to (pseudo) ECEF:
Xecef = ABCDXeci

X;cef = A B C D >.<eci

Noting that the position vector is the same as the original value, but the velocity vector
is not, as indicated by the prime notation.

Correct Ephemeris Sub-Algorithm

The correct ephemeris sub-algorithm performs steps 1.b., 1.c., and 1.d. above. This sub-algorithm will
guality check the ephemeris data and correct any timing jitter errors in the ephemeris solution. The
ephemeris values are used to calculate satellite position in the WGS84 Earth Centered Earth Fixed
(ECEF) frame.

a) Extract the ephemeris data records from the ancillary data

b) Search the ancillary data ephemeris records and find the first and last valid ephemeris records
in the interval. Extract the time tags for these records.

c) Set the ephemeris epoch to the time associated with the start index found in step b) converted
to UTC (see Convert Spacecraft Time Code to UTC sub-algorithm above). Retain the
corresponding epoch spacecraft time as it will be subtracted from the other ephemeris
samples.

d) Loop on ephemeris starting at and ending at indexes found in b.

1) Set ephemeris sample time to the time code from ancillary data minus the ephemeris start time
code, i.e. convert times to offsets from the ephemeris epoch defined in c).

2) Convert the ECEF ephemeris position and velocity vectors to ECI J2000 so that the angular
momentum check, and subsequent ephemeris smoothing algorithms can operate in inertial space.

3) Get angular momentum and orbital radius nominal values and allowable deviation thresholds
from the CPF: angmo_nom, angmo_delta, orbrad_nom, orbrad_delta.

4) Calculate orbital radius to compare against threshold:
radius = | p |
Where: p = ephemeris position vector

5) Calculate angular momentum of ephemeris to compare against threshold:

angular momentum = | px v

where:
p = satellite positional vector
v = satellite velocity vector

6) Check orbital radius and angular momentum against nominal values and thresholds from CPF:
If | radius — orbrad_nom | <= orbrad_delta AND



LDCM-ADEF-001

Version 3
| angular momentum — angmo_nom | <= angmo_delta

Then store the ephemeris point for processing.
Otherwise, report the bad ephemeris point as an outlier.

If fewer than 4 (the minimum required to support Lagrange interpolation) valid ephemeris points are
found a fatal error is returned for Earth-view, lunar, and stellar acquisitions. For solar cal acquisitions,
additional ephemeris points are propagated using the process model described in the Smooth
Position and Velocity Sub-Algorithm below, until 4 points are available.

The ECI ephemeris is reinterpolated, using the following method, to remove any small time jitters that
are present.

Let vx, vy, and vz be the measured velocity.
Let px, py, and pz be the measured position.

a) Loop through the ephemeris points (i = 0 to N-1) computing the distances between adjacent
points:

If first ephemeris point (i = 0) set dp = 0.
If ephemeris point is not first value, then

1) Calculate difference in ephemeris from point i and i-1

dXi = PXi - PXi-1
dyi = pyi - pYyia
dZi = PzZi — PZia

2) Calculate magnitudes of the delta position and the velocity vectors

Si = sgrt( dx; * dx; + dy; * dy; + dz; * dz)
sv; = sqrt( vxi * vx; + vy; * vy + vz * vz;)

3) Calculate difference between the “predicted time” from the magnitudes calculated in a2
and the time measured difference between ephemeris points i+1 and i

Set d; = s; / sv; — ephemeris time; + ephemeris time;.;

b) Calculate average difference of time differences from a.

=4

-1

d.

15

Let avg = IN:l I

Where N = number of ephemeris points

c) Loop through the ephemeris points, adjusting times by the “predicted time difference” (a3) and
the average of “predicted time difference” (b).



LDCM-ADEF-001
Version 3

ephemeris time; = ephemeris time; + d; — avg

Using Lagrange interpolation, calculate satellite position and velocity at one second intervals,
correcting any sampling timing irregularities and filling in any missing outlier points. The time-adjusted
satellite position and velocity from the previous step are taken as input.
a) Loop on ephemeris values
1) Calculate ephemeris interpolation time for current interval (multiple of one second).
2) Convert ephemeris time from seconds to year, day of year, and seconds of day.
3) Bracket ephemeris data for interpolation (4 valid points are needed)
a. Use 2 points before and 2 after the interpolation time.
b. If that would require points beyond the beginning or end of the ephemeris
interval, use the first four or the last four points in the interval.
4) Interpolate ephemeris to current time (al) using Lagrange interpolation and bracketed
values (a3).
Use the Smooth Position and Velocity sub-algorithm (see below) to smooth the ECI ephemeris. It is then
converted to ECEF so that the ECI and ECEF ephemeris representations are consistent (step 1.f.ii. above).

Smooth Position and Velocity Sub-Algorithm
A Kalman smoothing filter is used to smooth the ECI position and velocity vectors to accomplish step
1.e. above. The Kalman filter assumes a random process that can be modeled as follows:

[X ]k+1 = [¢]k [X ]k +[Q]k +[f ]k

where:
[Xlk = (nx 1) state vector at time tx
[0l = (n x n) matrix relating Xk to Xk+1
[q]k = (n x 1) process noise at time tx
[f ]« = (n x 1) forcing function at time tk

Measurements of the process are modeled as:
[Z]K =[H]K[X]K +[V]K

where:
[Z]k = (m x 1) measurement vector at time tx
[H]x = (m x n) relates the state vector at time tx to the measurement
[Vlk = (m x 1) measurement error at time ty

As noted below, in this application the measurements are direct observations of the state vector so n
=m.

To smooth the ephemeris data the state vector X is defined as:



LDCM-ADEF-001
Version 3

Xp
Yp
Zp
Xv
Yv
Zv

where:
Xp, Yp, Zp = X, Y, Z position
Xv, Yv, Zv = X, Y, Z velocity

The measurement vector [Z] is a 6x1 vector containing the telemetry X, Y, Z positional values along
with the telemetry X, Y, Z velocity values. The measurement vector looks like the state vector but
contains the measured ephemeris telemetry values for time tx whereas the state vector contains our
estimate of the “true” ephemeris position and velocity values.

The discrete state transition matrix is defined as:

1 00 At 0 O]
010 0 At 0
001 0 0 At
[¢]k:ooo1oo
000 0 1
0000 0 1)

where At is the time transition between measurement k and k+1.

The matrix [H] is defined as a 6x6 identity matrix since the measurements directly correspond to the
elements of the state vector.

The forcing function, [ f], is equal to the change in acceleration of the satellite due to the Earth’s
gravitational potential. The forcing function is described further in the Potential Functions sub-
algorithm below.

The process noise vector [(]k represents a random forcing function that models the uncertainty in the
dynamic model as a zero-mean random process with covariance [Q]. The process noise controls how
strictly the filtered states will conform to the dynamic model.

The process noise covariance matrix is defined as:



4 % 2
dt? *O'X2 + at 4O-X" 0
dt**o. 2
0 dt? *Gyz + 4GW
0 0 di?*o,” +
lQl= dt3<27xv2 0
2
0 dtsaw
2
0 0

ox=standard deviation in X positional element/value
oy=standard deviation in Y positional element/value
o,=standard deviation in Z positional element/value
ox~=standard deviation in X velocity element/value
oy=standard deviation in Y velocity element/value
oz~=standard deviation in Z velocity element/value

The measurement error matrix is 6x6 diagonal matrix:

where:

m, = variance of error in positional measurement
m, = variance of error in velocity measurement

m

,» 0
m,

© o o oo
©o o o o

o oo3 oo
o o3 oo o
o3 o o o o
S o o o oo

<

LDCM-ADEF-001
Version 3

The Kalman filter is used to produce a set of filtered and predicted state vectors, along with estimated
and predicted covariance state error matrices. These values are then used to produce a smoothed
state vector. This smoothed state vector will represent the smoothed position and velocity ephemeris

data.

Prediction equations:

[X]E = [¢]K—1 [X ]K—l + [f ]k—l

[Pk

[¢] K—1[ P] K-1[¢]TK_1 +[Qlk



Filter equations:

[K]

[X]
P

[P]

[PIR[H]E (H] [PIR[HT +[R])™
[X]% +[K] 021 ~[H][X]R)
([I]_[K]K[H]K)[P]E

K
K
K

where:
[I] is the identity matrix
[P] is the error covariance matrix

[Q] = E[qwq{]
[R] = E[viv{]

[X]"k = estimate of [X] given measurements through tx
[P]"k = error covariance associated with estimate [X]«

[X]k = filtered estimate at tk
[P]k = filtered estimate at tk

Note that the filtering step is skipped for points flagged as outliers so that:

Xl =[XI'x
[Pl =[Pl

Using the definitions above a new notation can be written:

[Xlkk-1 = [X]EK
[Plkik1 = [P]
[XIkik = [X]k
[Pl = [Plk
The smoothing equations are then:

For n=number of points-1,...,0

[X]K|N =[X]K|K +[A]K([X]K+1|N _[X]K+1|K)
(Al =[Pl [#]s o [P

[P]K|N :[P]K|K +[ Al ( P]K+1|N _[P]K+1|K)[A]1I;

The Kalman filter is initialized with a state vector:

[ Px(0) ]
Py(0)
Pz(0)
Vx(0)
Vy(0)

| Vz(0) |

LDCM-ADEF-001
Version 3



where:

LDCM-ADEF-001

Px(0) = first available X positional value
Py(0) = first available Y positional value
Pz(0) = first available Z positional value
Vx(0) = first available X velocity value
Vy(0) = first available Y velocity value
Vz(0) = first available Z velocity value

The initial error covariance matrix is defined as:

where:

s 0 0 0O 0 0
0 o 0 0 0 O
o 0 o° 0 0 O
[P]O = 2
o 0 0 o, 0 O
o 0 0 0 o, O
0 0 0 0 0 o]

Oy = initial standard deviation in X position
oy = initial standard deviation in Y position
0, = initial standard deviation in Z position
Ox = Initial standard deviation in X velocity
oOyy = initial standard deviation in Y velocity
O, = initial standard deviation in Z velocity

e |Initialize the state vector, error covariance matrix, and measurement error matrix

e Loop on ephemeris points

0 O O O O O O

Calculate At (time difference between sample time i+1 and i)
Calculate process noise matrix

Calculate Kalman gain

Filter state vector and error covariance matrix

Predict error covariance error matrix

Calculate force (acceleration) of Earths mass

Predict state

e Initialize At to nominal delta time (1 sec)

e Loop on ephemeris (reverse order for smoothing)

@)
©)
@)

The resulting

Calculate smoothed gain
Calculate smoothed state
Calculate At (time difference between sample time i+1 and i)

[X]kn are the smoothed ephemeris state vectors.

Version 3



LDCM-ADEF-001
Version 3
7.1.4.7.1 Gravitational Potential Functions

This sub-algorithm calculates the gravitational potential of the Earth represented as acceleration
(x,y,2). One way to model the Earth’s gravitational potential is by:

Mg Bpg
_r{l >, rPnsm(L)}

n=2
where:

Jn = Spherical Harmonics determined by experimentation
u = Earth’s gravitational parameter

re = equatorial radius of Earth

P = Legendre Polynomials

L = geocentric latitude

sin(L) = z/r

Taking the partial derivatives of the potential function with respect to x, y, and z gives the forcing
functions needed for each axis.

3 3 4 4
@:(_u_g)(l_g% L) (52 ) sk ) (272, 32) _gdu(r) (63 422 g
X r 2\r r? 20r r3 r 8\r r r

Jg 231z° 2102 352 30032 346524 945272
By : 3 > T 435)
8 r r r r r r

2 2

3ur? z X’z VA xIx? +
(—%J(CMF—& -5, Xy 2(:21r 5czzlr—y> 2322y ~10S,, y)

3/ 9.3 4 4
Sp _ —ﬂg (1_3£ r, SL_ 5\]3 r, 732 +3_z _5£ r, 635 _422+3
oy r 2\r r 2\r r r 8 \r r r'
J.(r\(2312° 2102° 35z) J (r,\(-3003z° 3465z 94572
-3= = e ————+ +—=2 = e t+t——F—————+35))
8\r r r r 16\ r r r r

2

3ur? xyz z y?z y yix*+y y2X
(—r—J( —5C,, 3 SZlF—5521r—3—2C22?—5C22(r—) 2822?—10822 = =)

@_(_u_z}(mJ_ ) (352, o5 ) (302 352" 3
o7 r? 2 \r r? 2 \r r r z

J,(r.\' (=702 , 63z* Js(r,\(—-9452° 693z° 315z 15r
T4l e . +15 |- 3| = e
8 \r r r 8lr r r r z
J; (_j (48512 3003z° 22057°
r

- 5 2 +245])




LDCM-ADEF-001

Version 3
2

4

3ur? X Xz y yz? z(x*—y® Xyz
(— —j(CH? —5C21r—3 + 821? —5321? -5C,, (—)—10822 r_3)

r r?

The heritage implementation uses the following six functions to invoke the potential calculations:

plx - first derivative of X (velocity)
ply - first derivative of Y (velocity)
plz - first derivative of Z (velocity)
p2x - second derivative of X (acceleration)
p2y - second derivative of Y (acceleration)
p2z - second derivative of Z (acceleration)

These functions are used to populate the six elements of the forcing function used to Kalman smooth
the ephemeris data.

Attitude Data Preprocessing
This sub-algorithm validates the quaternion attitude estimates and converts their spacecraft time
codes to accomplish steps 2.b., 2.c., and 2.d. above.

a)
b)

c)
d)

e)

Extract the attitude quaternion data records from the ancillary data

Search the ancillary data attitude records and find the first and last valid attitude records in the
interval. Extract the time tags for these records.

Adjust the attitude data window as necessary to ensure that it fits entirely within the ephemeris
data window.

Set the start and stop indexes for the attitude to be stored in the model to the indexes found in
C).

Set the attitude epoch to the time associated with the start index found in step c) converted to
UTC (see Convert Spacecraft Time Code to UTC sub-algorithm above). Retain the
corresponding epoch spacecraft time as it will be subtracted from the other attitude samples.

Loop on attitude records starting at and ending at indexes found in c).

1) Set attitude sample time to the spacecraft time code minus the attitude start time, i.e. convert
times to offsets from attitude epoch.

2) Compute the magnitude of the attitude quaternion:
Mag = sqrt( q1*ql + g2*g2 + g3*q3 + q4*q4 )

3) Check the magnitude against the nominal value of 1:

a. If the magnitude is between 1-¢ and 1+¢ then store the value for processing. The
quaternion normalization tolerance value, ¢, is nominally 1e-06 (1 part per million) and
stored in the CPF.

b. If the magnitude is outside the allowable range then flag the value as an outlier.

If SIRU processing is required:

g)
h)

i)
)

Extract the IMU (SIRU) data records from the ancillary data.

Process the SIRU clock data to construct spacecraft time codes for each SIRU sample. This is
step 2.e. above and is described in the “Process SIRU Time” sub-algorithm below. If this step
fails all subsequent SIRU processing is suppressed by setting a “SIRU_Valid” flag to FALSE.

Examine the SIRU status words, flagging any invalid points as outliers.
Convert the SIRU counts to angular rates. This is step 2.f. above and is described in the
“Process SIRU Counts” sub-algorithm below.



LDCM-ADEF-001
Version 3
k) Repeat steps b) through e) above for the SIRU data.

I) Use the SIRU epoch as the combined attitude data time epoch. In the event that the SIRU data are not
used, the attitude quaternion times are used instead.

Process SIRU Time Sub-Algorithm

This sub-algorithm analyzes the SIRU clock readouts accompanying each SIRU data sample and
uses these in conjunction with the SIRU clock sync offset values and SIRU sync spacecraft time
codes included in the Level OR IMU data records to construct spacecraft time codes for each SIRU
data sample.

SIRU sample timing is driven by a clock internal to the SIRU unit. This SIRU clock is a 16-bit counter
that increments every 4 microseconds, and rolls over when the 16-bit counter reaches its 64K limit.
The SIRU clock is periodically (every 10 seconds or so) synchronized with the spacecraft clock when
flight software sends a reset command. Flight software records the spacecraft time code associated
with this reset and the SIRU records the offset between the clock counter value at the time of the
reset and the clock counter value at the time of the current data sample in its clock sync field. These
offsets are scaled to units of 1/3 of a microsecond (1/12 of the SIRU clock resolution). The clock
counter value is not changed by the reset operation, so successfully locating and processing a single
reset event is sufficient to establish the timing relationship between the spacecraft and SIRU clocks.
The spacecraft time code associated with the reset is captured in the ancillary data as is the SIRU
sync field. Several additional considerations regarding the SIRU timing data include:

1. The SIRU sync field is only populated during the 100 Hz cycle while it is being updated (i.e.,
while the SIRU is being resynchronized). Otherwise, this field will contain fill. A fill value of -
32768 is used for this purpose.

2. One implication of the 100 Hz SIRU cycle is that some sync values will go unrecorded by the
50 Hz LDCM IMU telemetry. The syncs will be timed such that alternate values will be sampled
by and therefore present in the ancillary data. This raises the question of how these
unrecorded sync values will be detected and recovered. The SIRU sync spacecraft time code
value that accompanies each IMU record will change for the record containing the sync. That
would make it possible to use the SIRU sample clock data to recover the missing sync values,
though it is probably not important to do so. The sync events that are represented in the data
should be sufficient to establish the SIRU/spacecraft timing relationship.

3. Ancillary test data acquired during spacecraft comprehensive performance tests, demonstrated
that the SIRU clock is not perfectly synchronized to the spacecraft clock. This was manifested
as timing jitter in both the SIRU and attitude estimates (which apparently take their times from
the corresponding SIRU samples) in which adjacent samples, nominally separated by 0.02
seconds, are sometimes 0.01 and sometimes 0.03 seconds apart, indicating timing drift across
the 100 Hz sampling sequence. This has several effects:

a. The SIRU rates must be computed using the actual time differences rather than the
nominal time difference.

b. The assignment of times to samples prior to the first SIRU clock sync must use the
actual SIRU clock values, not the nominal timing offset.

c. The SIRU clock syncs are not always visible every 20 seconds (1000 samples apart).
The separation is sometimes 500 samples and sometimes 1500 samples due to 100 Hz
sampling cycle slippage. This (partly) motivated the inclusion of logic to validate SIRU
clock sync events against the previously established timing, to ensure that timing gaps
are not introduced into the SIRU data. It also means that intervals shorter than 30
seconds may not contain any valid SIRU clock sync events, leading to the failure of this



LDCM-ADEF-001
Version 3
algorithm and the suppression of further SIRU processing for the interval. This is
unlikely in normal (Earth-view, lunar, and stellar) acquisitions but likely in solar
calibration data.

4. The scaling and use of the SIRU latency estimate telemetry in the spacecraft ancillary data
stream is not entirely clear. Ancillary data sets from the spacecraft comprehensive
performance test (CPT) indicate that the latency is the time offset, in seconds, between the
SIRU (and 50 Hz quaternion) data and the flight software 1 Hz cycle times (i.e., the times at
which ephemeris and attitude filter outputs are generated). Since this offset is reflected in the
time codes that accompany these data elements, the latency estimates are somewhat
redundant. The baseline algorithm does not apply a latency correction.

Three items of SIRU timing telemetry will be used in the following algorithm: the SIRU clock value at
the sample time (one per SIRU sample), the SIRU sync reference field (one per sample time, but only
valid during resynchronization cycles), and the SIRU sync spacecraft time code (one per IMU record).
These will be referred to as clock value (clock), clock sync (sync), and sync time code (time)

respectively.

For each IMU record:
Compute the spacecraft time of last sync from the time code seconds and microseconds: time =
seconds + microseconds/1e6

For each SIRU sample (i):
If the clock sync field is not fill:

a.

b.

Record the current sample clock and time (above) values as base_clock and
base_time. Set base_sync equal to base_clock.
Compute the SIRU sync offset from the SIRU sync word using the 1/3 microsecond per
count scaling factor. The sync word scaling is represented as a ratio relative to the
SIRU clock scaling (12 sync counts per clock count):
sync_time = SIRU sync word * siru_time_scale / SIRU sync ratio
Add the SIRU sync offset to the base_time. This the time (in seconds from spacecraft
epoch) corresponding to the base_clock SIRU clock value.
Initialize the current offset, 16-bit rollover counter and previous offset value:
siru_offset =0
excess_offset =0
last_offset = siru_offset
Compute the time of the current sample:
gtime[i] = base_time + siru_offset * siru_time_scale (from CPF)
If this is the first valid (non-fill) value calculate all previous times by working back
through the previous SIRU clock samples, subtracting each from the previous time:
for(j=ito 1)
Aclock = MOD(siru_clock[j]-siru_clock][j-1]+64K, 64K)
gtime[j-1] = gtime[j] — Aclock*siru_time_scale
Make sure the new clock sync is consistent with previous time codes:
If abs(gtime[i]-gtime[i-1]-0.02) > 0.02
gtime[i] = gtime[i-1] + 0.02
base_time = gtime[i] — siru_offset*siru_time_scale
This is a coarse test that ensures that the sync update does not introduce a
timing adjustment of more than a full 0.02 second sample time. A warning
message is generated if this adjustment is made. This test ensures that the SIRU



LDCM-ADEF-001

Version 3
time codes are consistent and, at a minimum, are based on the first sync time in
the interval.

Otherwise:
If no valid sync fields have been found go to the next point
Otherwise:

Note: All arithmetic involving clock and sync variables is modulo 64K.
Check for a sync that was not sampled:
i. If time > base_time + 0.02 (a resync occurred) AND
time < gtime[i-1] + 0.02 (it occurred before this sample):
1. Reconstruct the sync time:
sync_time = gtime[i-1] + 0.02 - time
2. Update the base_time:
base time =time + sync_time
3. Reset the other sync cycle variables:
base clock = clock
base sync = clock
siru_offset =0
excess_offset =0
ii. Otherwise:
1. Calculate the sample time offset based on the current sync variables:
siru_offset = clock — base_sync (modulo 64K)
2. Correct for previous 16-bit rollover:
siru_offset += excess_offset
3. See if 16-bit rollover occurred on this sample and increment rollover and
offset variables if so:
if (siru_offset < last_offset)
excess_offset += 0x010000
siru_offset += 0x010000
iii. Compute the time of the current sample:
gtime[i] = base_time + siru_offset * siru_time_scale
iv. Set the last offset value to the current value (used to detect missed sync resets):
last_offset = siru_offset

If no valid sync values were detected return an error.

This procedure performs step 2.e. above.

Process SIRU Counts Sub-Algorithm
This sub-algorithm converts the raw SIRU data counts to angular rates.

For each SIRU sample:
1) If the sample’s SIRU validity flags are not set

a. Mark the point as an outlier.
b. If this is the first point, set the angular rates to zero.
c. Otherwise, set the angular rates to the previous sample values.

2) For valid SIRU samples:

a. If this is not the first point, compute the difference between the current integrated angle
reading and the previous reading for each of the 4 SIRU axes.



LDCM-ADEF-001
Version 3

b. If this is the first point, compute the difference between the next integrated angle reading
and the current reading for each of the 4 SIRU axes. If the next point is invalid, mark the
current point as an outlier and set the angular rates to zero.

c. Check for SIRU reset/rollover on each axis:

I. If the value of the angle difference is > 32K, subtract 64K
ii. If the value of the angle difference is < -32K, add 64K

d. Scale the counts to radians using the SIRU scale factor from the CPF.

e. The SIRU delta angle measurements are converted to rates by dividing by the delta time
computed from the SIRU sample time codes. This could also be done after the four SIRU
axis measurements are converted to roll-pitch-yaw measurements using the method
described in the next section.

This procedure performs step 2.f. above. For lunar and stellar intervals, all SIRU samples are flagged
as outliers so that they will be deweighted by the attitude Kalman filter.

Rotate SIRU Sub-Algorithm

This sub-algorithm rotates the SIRU data to the attitude control system (ACS) coordinate frame to
accomplish step 2.g. above. Note that this sub-algorithm will only be used if SIRU data processing is
required.

Construct the roll, pitch, and yaw rotational matrices from SIRU measurements and rotate angles to
the ACS coordinate system. Note that rather than reporting roll, pitch, and yaw rotations directly, the
SIRU reports rotations about four non-orthogonal axes oriented in an octahedral tetrad. These four
correlated measurements must first be reduced to rotations about the three orthogonal X-Y-Z axes
using the SIRU axis vectors from the CPF. These vectors define the orientations of the four SIRU
axes, and are nominally:

SIRU A: [ +0.57735027 +0.57735027 +0.57735027 ]
SIRU B: [+0.57735027 -0.57735027 +0.57735027 ]
SIRU C: [-0.57735027 -0.57735027 +0.57735027 ]
SIRU D: [-0.57735027 +0.57735027 +0.57735027 ]

Any one of these SIRU axes can be lost and the rotations about the X-Y-Z axes can still be
recovered. The vector for a failed SIRU axis should be set to zero.

Convert SIRU angles to roll-pitch-yaw:

Construct the [S] matrix where the columns of this 3 by 4 matrix contain the four SIRU axis
vectors:

SIRUAX SIRUBXx SIRUCX SIRUDX
[S]=| SIRUAy SIRUBy SIRUCy SIRUDy
SIRUAz SIRUBz SIRUCz SIRUDz

Construct the 3 by 4 SIRU to roll-pitch-yaw conversion matrix:

[s1RU2RPY |=(S][sT ) '[s]



LDCM-ADEF-001
Version 3

Construct the 4 by 1 SIRU observation vector:

SR
tan(=>
)
tan(e—B)
[SIRUOBS = 02 where, 6, = angle for SIRU axis n
tan(—>)
2
6
tan(—2
G|

Convert the four SIRU observations to three roll-pitch-yaw angles in the SIRU coordinate system:

roll, |

tan(—
=)
pitch
[RPYOBS | = | tan( > ) = [SIRU 2RPY JSIRUOBS]
yaw
tan(——
L % )_
roll 2*atan(RPYOBS,)

[RPYANG] =| pitch | =| 2*atan(RPYOBS,)
yaw 2*atan(RPYOBS,)

Construct the perturbation matrix using the SIRU roll-pitch-yaw angles:
[perturbation]=[IRU to ACS Jyaw]pitch]roll JACSto IRU]

Where [IRU to ACS] is the SIRU to attitude matrix found in the CPF and [ACS to IRU] is its
inverse.

The SIRU measured roll, pitch and yaw in ACS coordinates are then:

roll =—tan ™ (perturbation,, / perturbation,, ,)
pitch=sin™" (perturbation, ;)
yaw=—tan*(perturbation, , / perturbation,, ;)

7.1.4.7.2 Correct for Orbital Motion in SIRU Data Sub-Algorithm

The spacecraft SIRU senses rotations relative to inertial space so it will measure the orbital pitch
used to maintain spacecraft pointing as well as any deviations from that nominal alignment with the
orbital coordinate system. In using the SIRU data to densify or repair the spacecraft attitude estimates
they are blended in the orbital coordinate system. Before this can be done it is necessary to correct
the SIRU data for the time-varying orientation of the orbital frame relative to inertial space. This is
step 2.h. above.



LDCM-ADEF-001
Version 3
To account for off-nadir viewing and yaw steering effects a reference attitude vector representing the
mean roll-pitch-yaw for the scene is also provided. This is necessary because the orbital pitch effect
will show up in more than just the spacecratft pitch axis if the spacecraft body is not aligned with the
orbital coordinate system. The reference attitude is calculated as the average of the roll-pitch-yaw
values derived from the quaternion data for the attitude interval.

Note that this sub-algorithm will only be used if SIRU data processing is required.
If the acquisition type is Earth-viewing then:
Loop on all SIRU values:

1) Calculate the ECI position and velocity of satellite at time to using Lagrange interpolation.
The 18_movesat unit does this. That sub-algorithm is included in the LOS Model Creation
algorithm.

2) Calculate the transformation matrix from the satellite orbit system to the spacecraft
body/ACS coordinate system (ORB2ACS) using the input reference mean attitude. This is
the transpose of the ACS20RB matrix shown in the “Convert Roll, Pitch, Yaw to
Quaternion” section below.

3) Calculate the transformation matrix from ECI to satellite orbit system for time to and t, (the
inverse of the ORB2ECI matrix presented in the next section).

Using the satellite position and velocity at times tp and t,, the following matrix transformations
can be calculated:

ime

[eci2orb |
[eci2orb ]

_o = [eci2orb],
= [eci2orb],

ime=tn

Calculate the transformation from the Orbit system to ECI for time t, using the ephemeris state
vector at time t,.

4) Use the ORB2ACS matrix to compute the ECI2ACS matrices from the ECI20RB matrices:

[eci2acs]ip = [orb2acs] [eci2orb]io
[eci2acs]i, = [orb2acs] [eci2orb]in

Since the eci2acs matrix is orthogonal, acs2eci can be calculated as:
[acs2eci | = [eci2acs [
6) Calculate the amount of roll, pitch, and yaw due to the satellite’s orbit.
The roll, pitch, and yaw due to the orbital motion of the satellite can be found by looking at the

matrix transformation from spacecraft frame reference at time t, to spacecraft frame reference
to.



LDCM-ADEF-001
Version 3

[acs , 2acs,, | = [eci2acs , [acs, 2eci]

tanl[ (acs, 2acs,), , J
Aroll = — (acs, 2acs,), ,

Atime
sin*((acs . 2acs
Ap |tCh — (( n 0)2,0)
Atime
i (acs, 2acs, ), ,
(acs, 2acs, ), ,
Ayaw = — - ’
Atime
Atime =t, —to

This formulation computes the orbital attitude rate correction and assumes that the SIRU data
are, or have been converted to, rates.

5) Remove orbital motion attitude delta from original values.

roll = —roll — Aroll
pitch=—pitch— Apitch
yaw =—-yaw—Ayaw

The sign is swapped to convert the SIRU angles/rates from body-to-orbit to orbit-to-body.

7.1.4.7.3 Convert to Spacecraft Roll, Pitch, and Yaw Sub-Algorithm

The attitude data is given as quaternions in the ECI reference frame (ECI2ACS). The quaternions
are converted to roll, pitch, and yaw values in the ACS reference frame per step 2.i. above.

We first take the conjugate of the incoming ECI2ACS quaternion (q) to calculate the corresponding
ACS2ECI quaternion (q’).

q'1=-01
g2 =-02
93 =-03
Q' =04

The direction cosines (transformation) matrix from the ACS reference axis to the ECI reference
system (ACS2ECI) is constructed from the ACS2ECI quaternion, q’, as:

ACS2ECI =



LDCM-ADEF-001
Version 3

1 2 Ll 2 | 2 1 2 1 1 1 1 1 1 1 1
970,037+, 2(a, 9, +0530,) 201959, dy,)
1 1 1 1 ! 2 1 2 1 2 1 2 1 1 ] 1
Vo Vot it et 2 0 2,0 2, 2
The ACS2ECI transformation matrix can also be defined as the product of the inverse of the

spacecraft's attitude perturbation matrix P and the transformation matrix from the orbital reference
system to the ECI reference system (ORB2ECI)

The relationship between the orbital and ECI coordinate systems is based on the spacecraft's
instantaneous ECI position and velocity vectors. The rotation matrix to convert from orbital to ECI
can be constructed by forming the orbital coordinate system axes in ECI coordinates:

R
n=-"
N
p
(_) _))
nx v
R
h=
- >
nx v
- - >
cv=hxn

[0R|32EC|]=FV h ﬁ}

where:
p = spacecraft position vector in ECI
v = spacecraft velocity vector in ECI
n = nadir vector direction
h = negative of angular momentum vector direction
cv = circular velocity vector direction
[ORB2ECI] = rotation matrix from orbital to ECI

The transformation from orbital to ECI coordinates is the inverse of the ECI to orbital transformation

matrix. Since the ECI to orbital matrix is orthogonal the inverse is also equal to the transpose of the
matrix.

[ORB2ECI]|=[ECI20RB|" =[ECI20RB[

ACS2ECI = [ORB2ECI][P ]

The orbital reference system to ECI matrix must be defined at the same time as the
spacecraft's attitude matrix.

The roll, pitch, and yaw values are contained in the P™ matrix, thus:



LDCM-ADEF-001
Version 3
P! = [ORB2ECI] Y[ACS2ECI]
The spacecraft attitude is then:

pitch =sin (P20 )
-1
roll = —tan™ P_lz‘l
P~

-1
yaw = — tan{ FF:_ll’o )

0,0

For lunar and stellar intervals, the rotation to the orbital coordinate system is not performed, so the resulting
roll, pitch, and yaw values are relative to the ECI system. An additional check is performed on these roll, pitch,
yaw values to make sure that there are no crossings of the +/-r radians boundary, with 27 being added or
subtracted as necessary to keep the attitude sequence continuous. This check is performed on all intervals but is
only necessary for lunar/stellar data.

7.1.4.7.4 Smooth Euler and SIRU Sub-Algorithm

A Kalman smoothing filter is used to combine the attitude and SIRU data into one data stream and/or
replace attitude estimates flagged as outliers per step 2.j. above. Note that this sub-algorithm will only
be used if SIRU data processing is required and if the SIRU data are not suppressed.

Lagrange interpolation is used to synchronize the SIRU and quaternion information at the SIRU
sampling interval relative to the attitude epoch time. This is necessary because the quaternion and
SIRU data sample times are not necessarily uniformly spaced in the original spacecraft ancillary data.
The formulation shown here assumes that the SIRU is reporting attitude rate data rather than
integrated angles. Due to the increased potential for noise in rate measurements, an additional step is
required to synchronize the SIRU data. Specifically, the SIRU rate measurements are integrated to
form angles, the angles are Lagrange interpolated to synchronize the times, then the interpolated
angles are converted back to rates. The rate to angle integration is performed as follows (the roll,
pitch, and yaw axes are each processed separately using this method):

SIRU_angle[0] = SIRU_rate[0]*nominal_SIRU_time
For k =1 to NSIRU-1
SIRU_angle[k] = SIRU_angle[k-1]
+ SIRU_rate[k]*(SIRU_time[k] — SIRU_timel[k-1])

Performing the time regularizing interpolation in angle space suppresses any rate noise present in the
SIRU data. The interpolated angles are turned back into rates, suitable for use in the Kalman
smoother, as follows:

Fork =NSIRU-1to 1
SIRU rate[k] = (SIRU_angle[k] — SIRU_angle[k-1])/nominal_SIRU_time
SIRU_rate[0] = SIRU_angle[0] / nominal_SIRU_time

The state vector is defined as:



LDCM-ADEF-001
Version 3

attitude
[X]=| iru
drift

where:
attitude = smoothed attitude state
iru = attitude rate state associated with SIRU
drift = slow linear drift error in IRU
The measurement matrix [Z] is a 2x1 matrix containing the Euler and SIRU attitude data for time ty.
epa
2)-| ]
iru,
where:
epa = Euler attitude value at time tx

iru = SIRU attitude value at time ty

The state transition matrix is defined as:

1 dt 0
[#]=|0
0

where:
dt = sample timing of SIRU

The matrix [H] is defined as:

ol

The process noise covariance matrix is defined as:

_dt4 *O-iruz dt3 *Giruz 0 ]
4 , 2
3%
Q]| 57 S Ao, 0
0 0 dt?* o, .

where:
oir,=Standard deviation of SIRU process
ogrir=Standard deviation of drift process



LDCM-ADEF-001
Version 3
The measurement noise covariance matrix is defined as a 2x2 diagonal matrix:

w1 )

iru

where:
Meyer = Observation standard deviation noise in Euler measurement
m;, = observation standard deviation noise in SIRU measurement

Samples flagged as outliers are deweighted by multiplying the measurement standard deviation by
100 for that point.

Each axis is treated as an independent data stream. The Kalman filter is used to produce a set of
filtered and predicted state vectors along with estimated and predicted covariance state error
matrices. These values are then used to produce a smoothed state vector. The smoothed vector
attitude will represent an overall satellite attitude, or a combination of the Euler and SIRU
measurements.

The Kalman filter has an initial state vector of:

epa(0)
[X], =| iru(0)
0

where:
epa(0) = first measured quaternion
iru(0) = first measured SIRU

The initial covariance error matrix is defined as:

Cuae O 0
[P]O = O Giruz 0
0 0 Gdriftz

where:
Oepa = initial standard deviation in Euler
Oiry = initial standard deviation in SIRU
Ogiift = initial standard deviation in drift

Initialize the state vector, error covariance matrix, measurement error matrix, and dt.
Loop on attitude points
e Calculate process noise matrix

e Calculate Kalman gain
e Filter state vector and error covariance matrix



LDCM-ADEF-001
Version 3
e Predict error covariance error matrix
e Predict state

Loop on attitude points (reverse order for smoothing)

e Calculate smoothed gain
e Calculate smoothed state

The Kalman filtering machinery used here is the same as described in Smooth Position and Velocity
Sub-Algorithm above.

If SIRU data processing is not performed, this sub-algorithm is replaced by a simple attitude outlier
replacement algorithm that replaces estimates flagged as outliers above, by linearly interpolating new
roll, pitch, and yaw values from the neighboring samples.

Convert Roll, Pitch, Yaw to Quaternion

The roll pitch and yaw sequences computed above are converted to ECI quaternions and to ECEF
guaternions per steps 2.k. and 2.I. above. The conversion algorithm is the same in both cases, the
only difference being whether the algorithm is provided with ECI ephemeris data or ECEF ephemeris
data. Also see note 7.

For each attitude sample:
a) Compute the net roll-pitch-yaw by adding the bias value.
b) Use Lagrange interpolation to compute the ephemeris position and velocity at the time of the
roll, pitch, yaw attitude sample.
c) Compute the rotation matrix corresponding to the roll-pitch-yaw values:
[ACS20RB] =

cos(p)cos(y)  sin(r)sin(p) cos(y) + cos(r)sin(y) sin(r)sin(y) — cos(r) sin(p) cos(y)
—cos(p)sin(y) cos(r)cos(y) —sin(r)sin(p)sin(y) cos(r)sin(p)sin(y) +sin(r) cos(y)
sin(p) —sin(r) cos(p) cos(r) cos(p)

d) Construct the rotation matrix to convert from orbital to ECI/ECEF by forming the orbital
coordinate system axes in ECI/ECEF coordinates:

N

R

n=_P
-
p
- -
nx v

R

h =
- -
nx v

- - -

cv=hxn

[ORB2EC]= Fv h H}



LDCM-ADEF-001
Version 3
where:
p = spacecraft position vector in ECI/ECEF
v = spacecraft velocity vector in ECI/ECEF
n = nadir vector direction
h = negative of angular momentum vector direction
cv = circular velocity vector direction
[ORB2EC] = rotation matrix from orbital to ECI/ECEF

e) Compute the ACS2EC rotation matrix:
[ACS2EC] = [ORB2EC][ACS20RB]
f) Construct the corresponding EC2ACS quaternion:

First, noting that the ACS2EC matrix computed above can be expressed in terms of the
corresponding quaternion components as:

ACS2EC =
0,7 -0,2 052 +a,%  2a0, +0,40,) 2(,05 - 9,01 )
20,0, -050,)  -0,°+0,% 02+, 2,05 +0,0,)

2(d405 +0,9,) 200,95-0,9,)  -0°-0,° +0,° +q,

We can derive the following set of equations to compute the quaternion components from the
elements of ACS2EC:
1. Compute the four quantities:
d; =1+ ACS2EC;; — ACS2EC,, — ACS2EC3;
d, =1 - ACS2EC;; + ACS2EC;, — ACS2EC33
d3 =1 - ACS2EC;; — ACS2EC,, + ACS2EC33
ds =1+ ACS2EC;; + ACS2EC,; + ACS2EC3;3

2. Find the largest of these four quantities and use the corresponding equations to
compute the quaternion:

if (d, > MAX (d,,d;,d,)

q, = %J(1+ ACS2EC,, - ACS2EC,, — ACS2EC,,) = %\/d_l

q, = %(ACSZECH + ACS2EC,,)
1

q, = %(ACSZECB + ACS2EC,,)
1

q, = i(ACSZEcB — ACS2EC,,)

4q,



elseif (d, > MAX(d,,d,,d,)
1

q, = =+/(l— ACS2EC,, + ACS2EC,, - ACS2EC _Lg
2 2 11 22 33 2 2
q, = ﬁ(ACSZEClZ + ACS2EC,,)
2
q, = ﬁ(ACS 2EC,, + ACS2EC.,)
2
q, = %(ACSZECM — ACS2EC,,)
2
elseif (d, > MAX (d,,d,,d,)
q _ L JATACS2EC,, —ACS2EC,, + ACS2EC,,) = - /d
3 2 11 22 33 2 3
q, = %(ACS 2EC,, + ACS2EC,,)
3
q, = ﬁ(ACS 2EC,, + ACS2EC,,)
3
q, = ﬁ(Acs 2EC,, — ACS2EC,,)
3
else
q, = %\/(1+ ACS2EC,, + ACS2EC,, + ACS2EC,,) = %\/E
q, = %(ACSZECB — ACS2EC,,)
4
q, = ﬁ(AcszEC31 — ACS2EC,,)
4
q, = ﬁ(ACS 2EC,, — ACS2EC,,)
4

This method avoids the numerical danger of dividing by a small number.

LDCM-ADEF-001
Version 3

We then take the conjugate of the resulting ACS2EC quaternion, q, to yield the output EC2ACS

guaternion, q’:

q'1=-01
92 =-02
93 =-0s
q4=04



LDCM-ADEF-001
Version 3
7.1.4.8 Maturity

The ancillary data preprocessing algorithm includes new features (e.g., SIRU processing) but reuses
many heritage components (e.g., coordinate system transformations). Some notable modifications to
the heritage logic include:

1.

2.

The inertial to Earth fixed coordinate transformation logic was upgraded to include leap
seconds (table in CPF to convert from TAl) and light travel time effects (for LOS projection).
The Landsat and EO-1 heritage algorithm for converting between Earth-fixed and inertial
coordinates performs simple rotation from the ECI to the ECEF system (or vice versa) for any
input vector. This has the effect of rotating the inertial velocity vector to the ECEF frame
without incorporating the Earth rotation effect in the velocity. The GPS-derived LDCM ECEF
ephemeris includes Earth rotation effects. As noted in the ADD above, a new velocity
conversion unit was required to implement the velocity equations shown in figure A.1 of DMA
TR8350.2-A:

Position: XeCErF = [ABCD ] Xecl

Velocity: VECEF = [AB,CD ] Xec) + [ABCD ] VEec

Where: B’ is the time derivative of the B matrix.
The heritage ephemeris time jitter correction and Kalman smoother logic has been included in
the baseline algorithm but may not be necessary as the spacecraft ephemeris should be
cleaner than what we got from EO-1.
The heritage IAU 1980 precession and nutation models were replaced with the NOVAS C3.1
implementation of the IAU 2000 models.

7.1.4.9 Notes

Algorithm assumptions and notes, including those embedded in the text above, are:

3.

© N

The attitude and position/velocity estimates produced by the spacecraft will be sufficiently
accurate to achieve LDCM geolocation accuracy requirements without definitive processing of
the raw attitude sensor and/or GPS data.

Ancillary data for the full imaging interval with 4 seconds of extra data before and after the
interval, is available to provide the required geometric support data, a CPF containing the
scale factors needed to convert the ancillary data to engineering units is available, and the
guality thresholds needed to detect and remove or repair outliers are provided in the CPF.
The spacecraft ancillary data will provide attitude estimates (in the form of ECI-to-body
guaternions) at the same rate that it provides SIRU data. It remains to be seen whether the
spacecraft attitude estimates embody the full SIRU bandwidth. If they are overly smoothed,
then the SIRU data will be used to restore the high frequency information to the sequence of
attitude estimates.

Spacecraft time codes will be TAI offsets from the J2000 epoch. Since TAI and UTC differ only
by leap seconds, the conversion to UTC amounts to a leap second correction. The spacecraft
(J2000) epoch is hard coded (in a #define statement) to prevent it from being inadvertently
changed.

Spacecraft ephemeris data will be provided in ECEF rather than ECI coordinates.

Ancillary data will include ephemeris and attitude records that contain time tags/time codes
(e.g., seconds and fractions of seconds) that are TAI offsets from the J2000 epoch. Note that
J2000 occurred at January 1, 2000, 11:59:27.816 TAI which corresponds to January 1, 2000,
11:58:55.816 UTC (ref. Space to Ground ICD 70-P58230P Rev B). These times reflect the
32.184 second offset between TAI and TDT (the J2000 epoch reference frame) and the 32
second offset between TAIl and UTC as of J2000. The TAI-UTC offset at J2000 includes the
fixed 10 second TAI-UTC offset as of January 1, 1972 and the 22 accumulated leap seconds
between then and J2000.



LDCM-ADEF-001
Version 3
9. The baseline algorithm retains the heritage roll-pitch-yaw attitude model. At some point in the
future this may be replaced by a reformulated model that uses the quaternion representation
directly. The sub-algorithm that converts the roll-pitch-yaw attitude representation to a
guaternion may not ultimately be used in such a quaternion-based reformulation of the attitude
model, since a part of that reformulation would probably involve directly filtering/smoothing the
guaternion sequence rather than working in roll-pitch-yaw coordinates. That said, having the
capability, provided by this sub-algorithm, to generate a quaternion attitude data representation
that is identical to the roll-pitch-yaw representation would simplify the testing of any future
reformulation. Note that by including both roll-pitch-yaw and quaternion representations of the
attitude data, the algorithm outputs support either approach.
10.Common mathematical algorithms (e.g., matrix and vector operations, Lagrange interpolation)
that can be found in standard references (e.g., Numerical Recipes in C) are cited without being
described here.
11.The spacecraft estimate of SIRU latency was a late addition to the spacecraft ancillary data
stream. Based on our current understanding of its meaning, it is not needed for SIRU data
processing and is not included in the SIRU processing algorithm as of this writing. Should the
need for this parameter be established, it should be a straightforward adjustment to the
computed SIRU sample times.
12.The terms “IMU”, “IRU”, and “SIRU” are used interchangeably in this document. Inertial
measurement unit (IMU) is another name for an inertial reference unit (IRU). The space inertial
reference unit (SIRU) manufactured by Northrup Grumman is the particular type of IRU used
by LDCM.



LDCM-ADEF-001
Version 3
7.1.5 Ground Control Point Correlation Algorithm

7.1.5.1 Background/Introduction

The ground control point (GCP) correlation algorithm applies standard image matching techniques to
measure the locations of a set of GCPs, each consisting of positional information and an image chip,
within a Level 1Gt OLI/TIRS image. For each measured GCP the correlation status (success or
failure) and the location within the image where the GCP was expected and where it was actually
measured, are reported.

The GCP correlation algorithm will be used in two different contexts in the LDCM Image Processing
Element. It will function as part of the primary Level 1T (L1T) product generation flow where it
provides control point measurements for use by the OLI LOS Model Correction algorithm in
registering the L1T products to the GLS2000 control base. The GLS control base as used here
includes control from the Landsat Image Mosaic of Antarctica (LIMA) to provide global coverage. The
GCP correlation algorithm will also be used for geometric assessment as a tool for measuring the
locations of validation GCPs in processed L1T imagery. These measurements will be analyzed by the
Geometric Accuracy Assessment algorithm for data product characterization purposes. Digital
Orthophoto Quadrangle (DOQ) will be used on geometric supersites for instrument and platform
characterization and calibration.

The LDCM GCP correlation algorithm is derived from the corresponding ALI algorithm used in ALIAS.
Its implementation should be very similar to the gcpcorrelate application. This is a utility algorithm that
is not dependent on sensor architecture.

7.1.5.2 Dependencies

The GCP correlation algorithm assumes that ground control points are available for the ground site
and that the Model Creation, LOS Projection and Gridding, and Image Resampling algorithms have
been executed to create an SCA-separated terrain corrected L1G image for GCP mensuration (for
the LOS model correction application). It may also operate directly on an SCA-combined L1T product
image for geometric accuracy assessment purposes. In either case, the image must match the GCP
image chips with respect to ground sample distance, map projection, and image orientation. As such,
the band selection and resolution of the input image will depend upon the flow being executed/control
source being used. For standard L1T product generation processing the GLS control points (SWIR1
band, 30m resolution) will be used whereas for characterization and calibration flows the DOQ control
points (panchromatic band, 15m resolution) will be used. For L1T product geometric assessment,
GLS GCPs flagged as validation points will be extracted and used. A limited set of thermal (ETM+
band 6, 60m resolution) GCPs will also be available to support contingency TIRS-only accuracy
characterization operations. These thermal GCPs will use a source identifier of "TM6".

GCP Retrieval
The GCP mensuration process relies upon a control point storage, management, and retrieval
infrastructure (see maturity note #1 below). Though not formally part of the GCP correlation algorithm,
the availability of logic to retrieve the GCPs corresponding to a particular L1G image is a dependency
of the algorithm. The Landsat 7 production system is the model for this capability and will be the
source of the GLS-derived operational GCPs. The GCP retrieval logic would query the GCP
repository and request GCP records based upon:
1. Geography - GCPs that fall within the latitude/longitude bounds of the L1G image being
correlated. Note that GCPs meeting this criterion could come from more than one WRS
path/row, particularly at high latitudes.



LDCM-ADEF-001
Version 3

2. GCP Source - As noted above, operational L1T product generation would use GLS control
while the characterization and calibration operations would use DOQ control. Though not
shown as an input to this algorithm in the table below, which takes the pre-assembled control
package created by the GCP retrieval process as an input, this GLS, DOQ or TM6 control
source selection would be a work order input. Note that there is no requirement to combine
GLS, DOQ and/or TM6 GCPs in a single control set.

3. GCP Type - GCPs will be flagged as "control" or "validation" points so that a subset of the
available GCPs can be withheld from the image correction process to provide an independent
basis for accuracy assessment (see note #4). Valid query options are: CONTROL,
VALIDATION, and BOTH. The CONTROL GCP type will be requested for all cases except the
geometric accuracy assessment operation which will use VALIDATION points. In the event of
a correlation failure, a high priority scene may be reprocessed using the BOTH option. This
could help in cases where cloud cover has limited the set of usable GCPs in a particular
scene. Under this scenario if a scene was deemed as necessary for processing (high priority),
for characterization, calibration, or other reasons, this scene would be processed through the
IAS using the BOTH option.

The GCP retrieval process would extract the GCPs meeting the specified criteria from the GCP
repository and construct a GCP data package/library for input to this algorithm. This data package
would include the information presented in the Inputs section and in Table 1 below. The
implementation details of how the GCP data fields and image chips are stored, managed, and
packaged for delivery are not addressed in this ADD.

It is probably worth mentioning that the GCP retrieval query may return no valid GCPs. This will
happen if, for example, DOQ or TM6 control is requested for an area where it does not exist, or GLS
control is requested for a sea ice area or island/reef where control is not available. In this case the
processing system will have to be able to gracefully handle the lack of control (e.g., treat it as a
correlation failure and proceed with systematic processing). This is also outside the scope of this
ADD.

For the prototype code the database retrieval is mimicked in a two step process. The first is with a
perl script that searches for all GCPs available on line that fit within the images geographic extent.
This script will produce an ASCII file listing each valid chip (chips within image geographic extent) and
relevant projection information such as UTM zone. The second step is a C executable file that will
read the ASCII file created from the perl script and place all valid chips within a local directory. These
chips are then resampled if they are not projected to the same UTM zone as the image file (see
maturity note #3).

7.1.5.3 Inputs
The GCP correlation algorithm uses the inputs listed in the following table. Note that some of these
“‘inputs” are implementation conveniences (e.g., using an ODL parameter file to convey the values of
and pointers to the input data; including data set IDs to provide unique identifiers for data trending).

Algorithm Inputs

ODL File (implementation)

Input GCP library/package name/link

Level 1G Image file name

Band to process

Output GCP measurement file name

Calibration Parameter File name (CPF contains default values for processing




parameters)

Options and Parameters

Correlation result fit method (see note 2)

Search window size (line, sample) in pixels

Maximum allowable GCP displacement in pixels

Minimum correlation strength (dimensionless)

Image fill value to ignore in correlation

Predicted GCP location offset (line, sample) in pixels (optional) (see note #5)

GCP library/package contents: (see Table 1 for details)

Number of GCPs

For each GCP:

GCP 1D

GCP type (GLS, DOQ or TM6) (new)

GCP ground position (lat/lon/proj X/proj Y/height) for each GCP

Location of control point within image chip

Chip parameters (e.g., size, ground sample distance (GSD))

Image chip (see note 1)

Level 1G image contents

Image data

Image metadata (DDR) including:

Image dimensions (number of lines and samples)

Map projection

GSD/pixel size

Scene corner coordinates

7.1.5.3.1 CPF Parameters

Parameter Type Description

GCP Correlation Window Size | Int Correlation window size

GCP Minimum Correlation double | Minimum allowable correlation peak

Peak strength

GCP Maximum Displacement | double | Maximum allowable measured offsets

GCP Correlation Fit Method Int Correlation subpixel peak fit methodology

GCP Correlation Threshold double | Threshold of allowable fill values in
correlation window

GCP Correlation Fill Value double | Fill value to check for in correlation
window

7.1.5.4 Outputs

GCP Measurements (see Table 2 for details)

GCP 1D

Nominal GCP chip line/sample

GCP ground position (lat/lon/height)

Predicted GCP image line/sample

Measured offset from predicted line/sample

Correlation success flag

Correlation coefficient (new)

7.1.5.5 Options
Correlation Fit Method (only one choice in baseline algorithm).

LDCM-ADEF-001
Version 3

Note that the control source (GLS, DOQ, or TM6) will be selected by the infrastructure software that
gueries the control database and constructs the GCP library data package input to this algorithm. As
such, it is not strictly an option within this algorithm, but it is an option that this processing step will

select.



LDCM-ADEF-001
Version 3
7.1.5.6 Procedure

This function correlates GCPs located in reference image chips to a terrain corrected Level 1G
image. The GCPs are located within reference image chips. Windows are extracted from the L1G
image to do the image correlation. The correlated points are written to the GCP data file for
subsequent use in precision correction or product evaluation.

The heritage ALIAS and Landsat 7 implementations used L1G mensuration images that were not
terrain corrected. The use of terrain corrected images reduces the size of the L1G image region that
must be searched for a control point match (see maturity note #4). It also requires that the measured
GCP locations be associated with elevations interpolated from the digital elevation model (DEM) used
to perform the terrain correction. This is described in the LOS Model Correction ADD.

Ground Control Point Correlation Algorithm Details
GCPcorrelate performs correlations on ground control points (GCP) with a Level 1G image.

Ground Control Points

Ground control points (GCPs) and reference imagery are generated from USGS Digital Orthophoto
Quadrangles (DOQs). DOQs are designed to meet national map accuracy standards at 1:24,000
scale, which corresponds to a root mean squared error (RMSE) of approximately 6 meters. A mosaic
of DOQs is created by subsampling the 1 meter DOQ imagery to match the PAN band at a 15 meter
resolution. Multiple DOQs are combined so that the mosaic covers a Landsat World-wide Reference
System (WRS) scene extent. The ground control chip library is generated by extracting 64x64
windows from the DOQ mosaic. Since the DOQ data are only available for the United States, these
GCPs cover only U.S. test sites.

Ground control chips are chosen by stepping through the DOQ imagery at evenly spaced line and
sample locations. Elevation for the chips are found from DEM and stored in the GCP library. If the
DOQs that comprise the mosaic have large radiometric differences, histogram equalization
operations may be performed. These histogram operations include histogram matching to a reference
data set or histogram balancing within the mosaic.

Ground control points have also been extracted from the Global Land Survey 2000 (GLS2000) data
set. These GCPs serve as the geospatial reference for standard Landsat product generation and will
be used for LDCM standard product generation. The GLS2000 GCPs provide a globally distributed,
internally consistent control set. Though the GLS2000 did not include Antarctica, the Landsat Image
Mosaic of Antarctica (LIMA) did, so LIMA-derived control will be used in the Antarctic regions. These
GCP chips will be in the polar stereographic (PS) projection used by LIMA. Since a single projection
was used for the entire continent, there are no zone issues associated with Antarctic data. The terrain
corrected L1G mensuration images created for Antarctica will thus use the single LIMA polar
stereographic projection. The lack of image features and prevalence of cloud cover are likely to be a
more serious problem in Antarctica than elsewhere, leading to frequent GCP correlation failures in
this area.

The global set of GLS chips were extracted from band 5 (SWIR1) at 30m resolution. A limited set of
thermal GCPs will also be extracted from the GLS2000 ETM+ band 6 images using a selected subset
of GLS scenes. These thermal GCPs will be used in the event that TIRS geometric characterization
must be performed without reference to OLI data.

GCP Mensuration



LDCM-ADEF-001
Version 3

Throughout the LDCM data processing and characterization algorithms, normalized cross correlation
is used to measure spatial differences between two image sources. These image sources could be
OLI and DOQ, OLI and Landsat, TIRS and Landsat, or OLI and OLI. Image windows are extracted
and correlation is performed over the windowed area. The correlation process will only measure
linear distortions over the windowed areas. By choosing windows that are well distributed throughout
the imagery, nonlinear differences between the image sources can be found. Normalized cross
correlation will produce a discrete correlation surface (i.e., one correlation value per integer pixel
offset location). A sub pixel location associated with the offset is found by fitting a polynomial around
a 3x3 area centered on the correlation peak. The polynomial coefficients can be used to solve for the
peak or sub pixel location. The normalized cross correlation process helps to reduce any correlation
artifacts that may arise from radiometric differences between the two image sources.

If the two image windows of size NxM are defined by f and g, the mensuration
steps are:

1) Perform normalized grey scale correlation

() o)

2i=
/2 N2 N/2 M/2 _ _ N2
(f(J u)—fj > [g(x+1,y+u)—gj
j=— /2| M /2 j=—N/2i=—M /2
where:

_ 1 N/2 M/2

F =MD j_ZN/Zi_M,f(j’ )

R(x,y) =

_ 1 N/2 M/2 ] )
0=7——~ giX+ J,y+i
(M +1)(N +1)] zN/2| %/2

R(x,y) is the grey scale discrete correlation surface.

2) Find the peak of the discrete correlation surface by searching for the integer offset with the
largest correlation coefficient.

3) Fit a 2" order polynomial to a 3x3 area centered on the correlation peak. The polynomial has the
form:

P(X,y) =, +aX+a,y+a,Xy +a,X" +asy’
A least squares fit is performed on the points to solve for the polynomial coefficients.

3a) Set up matrices

[Y]=[xla]

9x1 9x6 6x1

where:



X = correlation locations centered around peak
Y = correlation values corresponding to X locations
a = polynomial coefficients

Note that these matrices take the form:

R(-1,-1)]
R(~1,0)

R(i,O)

RLY) |

9x1

1 -1 -1 (-D*¢D (D’
1 0 -1 (=D*0) (0

i 6 1 (1)’;(0) (0.)2
11 1 O o

9x6

3b) Solve for polynomial coefficients:

[a]= (X T[X ] [XT¥]

4) Find partial derivatives of polynomial equation in terms of x and y:

o
X

—P(x,y)=a, +a,y +2a,x

o
5 P(x,y)=a, +a;x+2a,y

(-1)? ]

(-D*

0)°

@* |

6x1

5) Set partial equations equal to zero and solve for x and y:

x offset = M

y offset =

where:

a; —4a,a;
2a,a, —a,a,
a —4a,a,

x offset = sub-pixel offset in x direction
y offset = sub-pixel offset in y direction

LDCM-ADEF-001
Version 3

6) Combine the sub pixel offset calculated in step 5 to the peak location from step 2 to get the

total offset.

The GCP positional information and the measured sub pixel offset is recorded for each GCP along
with a flag indicating whether the final correlation value passed simple correlation strength and
maximum offset thresholds. No statistics-based (e.qg., t-distribution) outlier detection is performed by

this algorithm.

Processing Steps

The basic GCP Correlation processing flow consists of the following steps:

1. Read the GCPs and L1G image.

2. For each GCP:



LDCM-ADEF-001
Version 3
2.1.Compute the predicted location of the GCP in the L1G image using the GCP map
projection coordinates and any specified predicted offset.
2.2.Extract an image window from the L1G image at the predicted location.
2.2.1. Make sure the image window contains sufficient non-fill image data.
2.2.2. Make sure the L1G image and GCP image chip are in the same map projection
(UTM zone). Reproject (see below) the GCP chip if necessary.
2.3.Correlate the GCP image chip with the L1G window to find the optimum match point.
2.4. Test the measured correlation and offset against predefined thresholds.
2.5. Write out the GCP mensuration results.

The reprojection of the GCPs in the prototype code is done as a separate step through the process
called gcpretrieve. This process is a precursor to the actual correlation process. It is also worth
noting that the resampling methodology is slightly different between the Landsat heritage code and
the prototype. The Landsat methodology used a table of weights that were applied to each chip in
order to perform the reprojection.

The GCP correlation procedure was implemented in the heritage ALIAS prototype. Though the
correlation process is conceptually simple, it is computationally intensive so the ALIAS
implementation was designed to be efficient. This included taking advantage of parallel processing.
These processing efficiency measures make the heritage implementation somewhat more
complicated than it might otherwise be. The remainder of this processing discussion follows the
LDCM prototype, which was based on the heritage ALIAS implementation, to illustrate how the
conceptually simple flow outlined above was mapped to a computationally efficient implementation.

7.1.5.7 Prototype Code

Input to the executable is an ODL file, output is an ASCII file containing measured offsets between
the input image file and GCP library. Under the prototype output/input file directory there is a
directory called chips which contains the heritage type GCP data structures and files. Under the
prototype output/input directory called add that contains the ODL files needed, the HDF5 input image
file, a perl script needed, and the CPF.

The prototype code was compiled with the following options when creating the test data files:
-g -Wall -march=nocona -m32

Get GCP Correlate Parameters (get_gcpcorrelate_parameters)
This function gets parameters from the ODL parameter file.

Get GCP Information (get_gcp_information)
This function reads the GCPs from the input GCP library.

Process GCP (process_gcp)
This function processes all the GCPs by extracting the GCP image chip, extracting the image
window, performing the correlation for each point, and then writing the results to the GCP data file.

NOTES:

1: The correlation routines want things in sample, line order, so the fit_offset pairs returned are
horizontal (sample) and then vertical (line) offsets. In contrast, the GCP data file contains fit_offset in
line, sample order.



LDCM-ADEF-001
Version 3
2: To calculate the correlated location, know 2 things:
a. The correlate routines return the offset from the reference window (chip) to the search window
(L1G), which is also the offset from the nominal reference point to the actual point in the search
window.

b. The integer location of the predicted location roughly corresponds to the integer location of the
reference location. We need to report the predicted search line, sample of the reference point and
the offset from the predicted point to the correlated point. So to get the correlated location, we start
with the integer location of the predicted point because this corresponds to the integer part of the ref
point (this is why gcp[num_used_gcp].fit_offset subtracts the fractional part of the predicted
location). Then we add the fractional part of the reference coordinate because this is really the
point we are going after. Then we add the correlation fit_offset because this tells how the reference
point relates to the location in the search window.

3: The calculation for fit_offset only works correctly because we are assuming the reference and
search points are at the center of the window (plus some fractional distance) and the difference in
window size is accounted for by nom_off; if the reference point was not at the middle of the chip, this
would have to be adjusted.

Initialize Parallel Correlator (xxx_init_parallel_correlator)
This function initializes an instance of the parallel correlator. All the multiprocessing resources are
created and the memory for the chip buffers and queue structures is allocated.

Get Correlation Chip Buffers (xxx_get_corr_chip_buffers)

This function returns buffers for the search and reference chips that will be submitted to the
parallel correlator. Getting buffers from this routine and not submitting them to the parallel
correlator will quickly exhaust all the buffers available. The buffers will be freed when the parallel
correlator is closed. When compiled in single threaded mode, the same set of buffers are used for
every pair of chips.

Close Parallel Correlator (xxx_close_parallel_correlator)

This function is the routine that needs to be called after all the chips have been submitted to the
correlator. This routine will wait until all the threads have completed, then destroy this instance of
the parallel correlator. The results of the correlation are not valid until this routine returns.

Get Search Line/Sample (get_search_line_samp)

This function finds the line and sample that corresponds to the given projection y and x. Since the
L1G image is positioned (map projection) north up, finding the line (sample) is done by subtracting
the upper left projection y(x) value from the GCP projection y(x) value and dividing the result by
the line(sample) pixel size.

NOTES:
The line and sample numbers are O-relative.
This will not work for a path-oriented image.

Extract Window (ias_misc_extract_window)
This function extracts an image window around a specific GCP. From the input image, a window
of the specified size will be extracted around the GCP line and sample. If the window is of odd



LDCM-ADEF-001
Version 3
size, the extra line and/or sample will be at the beginning of the imagery. The data in the window
representing portions outside the imagery will be filled with zeros.

There are 2 steps to the extraction:

(1) data type conversion of whatever the L1G image is to float

(2) setting the calculated window correctly into the buffer (even if the calculated window falls
partially outside the image)

Check Fill (oli_check_fill)

This function checks the input window for fill data over the specified percentage. This routine is
useful to determine if there is too much fill data in a window. If too much fill data exists, then the
window might not be good for correlating. Fill data nominally has a value of 0.0.

Extract Chip ( xxx_extract_chip)
This function reads the specified image chip. The image chip is always assumed to be a flat binary
file containing chip_size[0] x chip_size[1] BYTE pixels (see note #1).

Resample chip if necessary (build_gcp_lib)

New logic, derived from the Landsat Product Generation System (LPGS) heritage, will be required
here to check the image chip map projection and, if necessary, resample the chip to match the
L1G image. This is necessary when working with a global GCP repository containing GCPs
extracted from multiple source scenes in multiple UTM zones. The GCPs falling inside a particular
L1G image will frequently, particularly at high northern latitudes, be drawn from source images in
neighboring UTM zones. Note that this is not a problem in Antarctica where a single polar
stereographic projection is used. It is also worth noting that the resampling techniques between
the LPGS heritage code and the LDCM prototype is not the same.

Image chip reprojection proceeds as follows:

1. Compute the image chip upper left (UL) corner coordinates from the GCP UTM

coordinates, the GCP image line/sample coordinates, and the image chip pixel size:

a. UL Corner X = GCP X - GCP sample coordinate * chip pixel size

b. UL Corner Y = GCP Y + GCP line coordinate * chip pixel size
Note that the GCP line/sample coordinates are relative to a zero-origin at the center of the
upper left chip pixel.

2. Project the GCP latitude and longitude to the L1G map projection (UTM zone) using the
projection transformation package (see OLI/TIRS LOS Projection ADD) to compute GCP X'
and GCP Y’ projected coordinates.

3. Compute the desired "new" chip UL corner in the L1G projection using the new GCP X' and
GCP Y’ coordinates, rounding off to a whole multiple of the pixel size:

a. UL Corner X' = GCP X' - GCP sample coordinate * chip pixel size
b. UL Corner Y'= GCP Y' + GCP line coordinate * chip pixel size
c. UL Corner X' = round(UL Corner X'/chip pixel size)*chip pixel size
d. UL Corner Y' =round(UL Corner Y'/chip pixel size)*chip pixel size
4. Compute the "new" GCP line/sample coordinates in the reprojected chip:
a. GCP sample coordinate' = (GCP X' - UL Corner X')/chip pixel size
b. GCP line coordinate' = (UL Corner Y' - GCP Y")/chip pixel size
5. For each point in the new chip:
For line = 0 to nlines-1
Compute: Y'=UL Corner Y' - line*chip pixel size



LDCM-ADEF-001
Version 3
For samp = 0 to nsamps-1
1. Compute: X' = UL Corner X' + samp*chip pixel size
2. Convert (X',Y") to old chip projection (X,Y) using the projection transformation
package.
3. Compute: oline = (UL Corner Y - Y)/chip pixel size
4. Compute: osamp = (X - UL Corner X)/chip pixel size
5. If the point (oline, osamp) falls inside the old chip boundary Then interpolate a
DN value at that location using bilinear interpolation:
lindex = (int)floor(oline)
sindex = (int)floor(osamp)
fline = oline - lindex
fsamp = osamp - sindex
DN(oline,osamp) =
DN(lindex,sindex)*(1-fline)*(1-fsamp) +
DN(lindex+1,sindex)*fline*(1-fsamp) +
DN(lindex,sindex+1)*(1-fline)*fsamp +
DN(lindex+1,sindex+1)*fline*fsamp
Else DN(oline,osamp) = 0
5. Use the reprojected image chip and GCP line/sample coordinates in the GCP correlation
procedure.

PO T®

The build_gcp_lib, or gcpretreive process, is separated from the GCPcorrelate process so as to
emulate the GCP retrieval process from the database containing the GCP image chips and their
corresponding metadata. This retrieval process also contains the following C modules:
GCPretrieve -Main driver for GCP retrieval process.
get_gcp_lib - Reads GCPs according to set of criteria
get_gcp_information - Wrapper for reading GCPLIib information
get_gcp_proj_parms - Reads projection information from image file metadata
get_gcpretrieve_parameters - Read input ODL parameters
This code was based on the Landsat ETM+/TM heritage code for GCP retrieval and chip
reprojection.

Put GCP (io_put_gcp)
This function writes all GCP records to the specified output file. This function writes out a set of
GCP data records. If the file already exists it will be overwritten.

Write GCP (io_write_gcp)

This function writes one record to the GCP data file. The file pointer is left at the end of the
current record so sequential calls of xxx_write_gcp will sequentially write all the records in the
file. The GCP data file is assumed to be an ASCII file containing one line of text per GCP data
record. Each record contains: point_id, reference_line, reference_sample, latitude, longitude,
elevation, predicted_search_line, predicted_search_sample, delta_y (line), delta_x (sample),
accept/reject_flag, correlation coefficient, reference band number, search band number,
search SCA number (0 for SCA-combined images), chip source (DOQ, GLS).

Submit Chip to Correlator (xxx_submit_chip_to_corr)

The xxx_parallel_corr module implements a parallel correlation object. Using the Posix threading
interface, up to MAX_CORR_THREADS (or the number of processors available - whichever is
less) are created to perform correlation. The main thread that creates the parallel correlator is then



LDCM-ADEF-001
Version 3
responsible for "feeding"” the parallel correlator chips to correlate. The xxx_submit_chip_to_corr
places the chips into a queue. The correlation threads remove the chips from the queue and
perform the correlation. The results of the correlation are not immediately available to the
application since xxx_submit_chip_to_corr returns before the correlation is complete.

Before any of the correlation results are used, the application must call
xxx_close_parallel_correlator to make sure all the chips have been correlated and to destroy the
correlation threads.

Grey Correlator ( xxx_grey_corr)
This function correlates a reference subimage with a search subimage using the pixel grey
levels and evaluates the results.

Grey Cross Product Same-size (xxx_grey_Cross_ss)

This function computes the unnormalized (raw) sum of pixel-by-pixel cross products
between the reference and search images for every combination of horizontal and vertical
offsets of the reference relative to the search image for windows of the same size (in one
dimension at least).

Grey Normalization Same-size (xxx_grey_norm_ss)

This function converts raw cross-product sums to normalized cross-correlation coefficients,
using tabulated statistics from previous step (grey_cross_ss). This function is much simpler
than the one for unequal-sized windows, since all normalizing is done by the space domain
same size correlator. All that has to be done here is statistics gathering to set up the peak
finder.

Grey Cross Product (xxx_grey_cross)

This function computes the unnormalized (raw) sum of pixel-by-pixel cross products
between the reference and search images for every combination of horizontal and vertical
offsets of the reference relative to the search image. This function works for windows of
unequal size.

Grey Normalization (xxx_grey_norm)

This function converts raw cross-product sums to normalized cross-correlation coefficients,
while tabulating statistics needed for subsequent evaluation. This function works for
unequal window sizes.

Grey Evaluation (xxx_grey_eval)
This function evaluates various measures of correlation validity and extracts a subarea of
the cross correlation array centered on the peak.

Fit Registration (xxx_fitreg)
This function fits a quadratic surface to the neighborhood of the correlation peak and from it
determine the best-fit registration offsets and their estimated errors.

Input and Output File Details



LDCM-ADEF-001
Version 3
The details of the fields contained in the input GCP library file (Table 1) and the output measured
GCP file (Table 2) are presented below.

Field

Description

Header Text

Zero or more lines of ASCII text, each line beginning
with the "#" symbol to designate it as a header
comment, describing GCP library contents.

Data Start Marker

"BEGIN" - static text to indicate beginning of data area

Number of GCPs

Integer number (N) of GCPs to follow (new)

GCP Record Fields:

One set per GCP

GCP Number

Sequence number of GCP in this package (1 to N)

GCP ID

Unique ID for GCP of the form: ppprrrnnnn
where: ppprrir = WRS path/row GCP was taken from
nnnn = chip sequence number

GCP Image Chip
Line Coordinate

GCP location within image chip - line coordinate
(fractional pixel).

GCP Image Chip
Sample Coordinate

GCP location within image chip - sample coordinate
(fractional pixel).

GCP Latitude

GCP latitude in degrees.

GCP Longitude

GCP longitude in degrees.

GCP X

GCP projected X coordinate in meters.

GCPY

GCP projected Y coordinate in meters.

GCP Height

GCP WGS84 ellipsoid height in meters.

Image Chip GSD

Chip pixel size in meters.

Image Chip Lines

Number of lines in image chip.

Image Chip Number of samples in image chip.
Samples
GCP Source Source of GCP, either "DOQ" or "GLS" or "TM6"
GCP Type Control/validation point flag, either "CONTROL" or
"VALIDATION"
Image Chip UTM or PS
Projection

Image Chip Zone

UTM zone number (1-60). Use 0 for PS.

Image Chip Date

yyyymmdd = year/month/day of GCP source

Image Chip Link to chip image data (could be in file named with
GCP ID)
Table 1: Input GCP Library Contents
Field Description

GCP Record Fields:

One set per GCP

Point ID

GCP ID (see Table 1)

GCP chip line location

Line location of GCP within chip

GCP chip sample location

Sample location of GCP within chip

GCP latitude GCP WGS84 latitude in degrees
GCP longitude GCP WGS84 longitude in degrees
GCP height GCP WGS84 ellipsoid height in meters

Predicted GCP image line

Predicted line location of GCP in L1G image

Predicted GCP image

Predicted sample location of GCP in L1G image




LDCM-ADEF-001

Version 3
sample
GCP image line offset Measured line offset from predicted location
GCP image sample offset Measured sample offset from predicted location
Correlation success flag Flag O = correlation failure, 1 = success
Correlation coefficient Measured correlation coefficient (new)
Search band number L1G band number used
Search SCA number L1G SCA where GCP was found
Chip source GCP source (DOQ or GLS or TM6)

Table 2: Output GCP Mensuration File Contents

7.1.5.8 Maturity

Though much of the ALI model correction algorithm will be reusable there are several areas where
changes are expected:

5. The heritage process takes WRS path/row as input and accesses a static GCP Library file set
indexed by path/row. For the LDCM implementation it is assumed that GCP storage and
retrieval is managed externally and that this process will be provided with a set of GCPs
applicable to the image area. The prototype uses a pre-processing step involving a perl script
and a C executable called gcpretrieve to mimic the database retrieval and chip reprojection
steps. These steps are discussed in the prototype and verification sections.

6. The computed correlation coefficient is added as an output to make it available for subsequent
outlier filtering, if necessary.

7. At high latitudes scenes will frequently straddle multiple UTM zones. The control point chips
falling in a given scene may thus be in more than one projection leading to difficulties in
correlating the chips (due to the rotation between the chip projection and the mensuration
image projection. This problem has been solved in the Landsat processing system (LPGS) by
including logic in gcpcorrelate that resamples the GCP chips, if necessary, to match the
mensuration image projection. This logic is not part of the ALIAS heritage code but will be
needed to support global LDCM product generation using the GLS ground control. The
reprojection of the chips has been addressed and prototyped. This is no longer and issue with
the prototype code.

8. The baseline plan for LDCM GCP correlation is to use a terrain corrected, rather than the
heritage systematically corrected, image for GCP mensuration. This is a departure from the
ALIAS (and Landsat) heritage, motivated by the implications of processing off-nadir images.

a. The predicted GCP locations used to establish the search area in the mensuration
image are computed without reference to terrain displacement effects. For nadir images
the terrain-induced cross-track offsets introduced between these “flat Earth” predictions
and the actual GCP locations are small enough to fit inside the normal GCP search
window: a maximum elevation of 8000m corresponds to ~1200m of parallax at the
edge of the swath which is a displacement of ~40 pixels (at the 30m GLS control
resolution). A 64x64 GCP chip and a 128x128 search area can accommodate offsets up
to +/-31 pixels whereas a 256x256 search area can accommodate offsets up to +/-95
pixels.

b. For off-nadir images the terrain sensitivity is roughly tripled so offsets up to 120 pixels
would have to be accounted for. Since increasing the search area substantially
increases processing time and increases the likelihood of a false GCP match, and given
the fact that LDCM pointing should be sufficiently accurate to generate predicted GCP
locations that are within a pixel or two most of the time, it would be better to account for
terrain offsets when predicting GCP locations to minimize the search area. One way to



LDCM-ADEF-001
Version 3

do this would be to calculate the magnitude of this effect and include it in the
computation of the predicted GCP locations. The problem with this is that the LOS
model correction algorithm uses the measured offset between predicted and measured
GCP locations to derive model corrections, so any adjustment to the predicted location
based on a computed terrain offset, will have to be accounted for in the precision
correction algorithm. Thus, complicated offset prediction and offset removal logic would
need to be added to both the GCP correlation and LOS model correction algorithms.

c. A better way to accomplish the same objective is to perform the mensuration on a
terrain corrected image, where the terrain offsets have been accounted for explicitly in
the image generation process. This approach is preferable to attempting to correct for
terrain point-by-point in the mensuration of a systematically corrected image, but it does
have some drawbacks:

I. Using a terrain corrected mensuration image will require using the DEM as
another input to the LOS model correction algorithm in order to compensate for
any difference between the GCP elevation and the corresponding DEM elevation
at the point where the GCP match was found in the mensuration image. This
adds complexity to an already complex algorithm.

ii. Misregistration between the systematic image and the DEM can cause the terrain
correction process to inject high frequency image distortion. This would probably
not be a huge problem given the expected accuracy of LDCM pointing and
ephemeris knowledge. In areas of significant relief, even a slightly misregistered
DEM may provide a mensuration image that is more similar to the GCP chips,
which are themselves terrain corrected, than a systematic image would be.

7.1.5.9 Notes

Some additional background assumptions and notes include:

1. The heritage GLS, TM6, DOQ image chips are stored as 8-bit (BYTE) arrays whereas the
LDCM imagery will be 16-bit (or float). The correlation is performed on floating point data so
both the image and the chips are converted to float on input. Thus the image and chip data
types need not match.

2. The correlation result fit method defines the algorithm used to estimate the correlation peak
location to sub-pixel accuracy. Only the quadratic surface fitting method described in this ADD
is supported in the baseline algorithm.

3. Though the normal baseline for measuring control points is to use an SCA-separated terrain
corrected image, this algorithm should also function with a combined-SCA image so that it can
be used to measure test point GCPs in L1T product images to support the geometric accuracy
characterization algorithm.

4. The GCPs in the GCP repository (part of the Infrastructure Element) should be flagged as
either “control” points, to be used for LOS model correction, or “validation” points, to be used
for geometric accuracy characterization. The utility that extracts control points from this
repository should be able to extract either control set. The “control” set would contain the
majority of the points. The “validation” flag would only be used in areas where more than some
minimum threshold number of GCPs are available. These flags would be set by the Cal/Val
team at the time the GCP repository was loaded and could be adjusted, if necessary,
thereafter. Criteria for selecting validation points would be based upon considerations such as:

a. The total number of available GCPs in the scene must exceed some minimum (e.g.,
100).

b. Points that fall on the boundary (or, more precisely, the convex hull) of the GCP set
would not be validation point candidates.



LDCM-ADEF-001
Version 3
c. Points that are within some maximum distance (e.g., 25 km) of another GCP would be
validation point candidates.
The goal would be to develop an automated validation point identification algorithm that would
operate somewhat like an outlier rejection algorithm: identify the best validation point candidate
based upon a set of criteria, remove it from the control point list, and iterate until no additional
validation points are identified.

5. Scenes with poor geolocation accuracy can lead to the actual GCP L1G image locations being
sufficiently far from their predicted locations so as to make it impractical to expand the GCP
search window to the extent necessary to find the GCPs. An optional parameter to specify an a
priori predicted offset provides a more reliable way to find and correctly correlate the GCPs in
this situation. This can occur early in the mission, before the first on-orbit sensor alignment
calibration, or during an anomaly investigation.

7.2 OLI Geometry Algorithms
7.2.1 OLI Line-of-Sight Model Creation Algorithm

7.2.1.1 Background/Introduction

The line-of-sight (LOS) model creation algorithm gathers the ancillary data and calibration parameters
required to support geometric processing of the input image data set, validates the image time codes,
extracts the corresponding ephemeris and attitude data from the ancillary data stream, performs the
necessary coordinate transformations, and stores the results in a geometric model structure for
subsequent use by other geometric algorithms. The OLI LOS model creation algorithm is derived
from the ALI model creation algorithm used in ALIAS. Its implementation is very similar to the alinit
application and the geometric sensor (axx) and spacecraft (exx) model libraries used in ALIAS,
though much of the ephemeris and attitude preprocessing logic present in alinit has been moved to
the, now separate, ancillary data preprocessing algorithm to better isolate the bulk of the geometric
processing logic from the details of the incoming ancillary data stream. New attitude data processing
logic has also been added to separate the high- and low-frequency attitude effects to allow the image
resampling process to better correct for jitter at frequencies above the original 10 Hz algorithm design
limit without requiring an unreasonably dense resampling grid.

7.2.1.2 Dependencies

The LOS Model Creation algorithm assumes that the Ancillary Data Preprocessing algorithm has
been executed to accomplish the following:

Validated ephemeris data for the full imaging interval have been generated

Validated attitude data for the full imaging interval have been generated

The ancillary data have been scaled to engineering units
Whether or not “definitive” processing has been performed, the Ancillary Data Preprocessing
algorithm will generate preprocessed smoothed and cleaned ephemeris and attitude data streams.
The format will be the same for either validated spacecraft estimates or definitive processing.

7.2.1.3 Inputs

The LOS Model Creation algorithm uses the inputs listed in the following table. Note that some of
these “inputs” are implementation conveniences (e.g., using an ODL parameter file to convey the
values of and pointers to the input data; including data set IDs to provide unique identifiers for data
trending).



Algorithm Inputs

ODL File (implementation)

Acquisition Type (Earth, Lunar, Stellar) (optional, defaults to Earth)

CPF File Name

Ancillary Data Input File Name

LOR/L1R Directory and File Names

WRS Path/Row (stored in model and used for trending)

Trending On/Off Switch (not implemented in prototype)

LORp ID (for trending)

Work Order ID (for trending)

Optional Precision Model Input Parameters (see note 9)

Input Precision Model Reference Time (optional)

Input Precision Ephemeris Correction Order (optional)

Input Precision X Correction Parameters (optional)

Input Precision Y Correction Parameters (optional)

Input Precision Z Correction Parameters (optional)

Input Precision Attitude Correction Order (optional)

Input Precision Roll Correction Parameters (optional)

Input Precision Pitch Correction Parameters (optional)

Input Precision Yaw Correction Parameters (optional)

CPF Contents

WGS84 Earth ellipsoid parameters

Earth orientation parameters (UT1UTC, pole wander, leap seconds) (see
note 1)

Earth rotation velocity

Speed of light

ACS to OLI rotation matrix

Spacecraft center of mass (CM) to OLI offset in ACS reference frame
(meters)

High frequency attitude data cutoff frequency (Hz)

Focal plane model parameters (Legendre coefficients)

Detector delay table (now including whole pixel even/odd and deselect
offsets)

Nominal LOR fill (per band)

Nominal OLI frame time nominal frame_time (4.236 msec)

Nominal OLI MS and pan integration times (msec)

OLI MS and pan detector settling times (msec)

Preprocessed Ancillary Data Contents

Attitude Data

Attitude data UTC epoch: Year, Day of Year, Seconds of Day

Time from epoch (one per sample, nominally 50 Hz)

ECI guaternion (vector: q1, g2, g3, scalar: g4) (one per sample)

ECEF quaternion (one per sample)

Body rate estimate (roll, pitch, yaw rate) (one per sample)

Roll, pitch, yaw estimate (one per sample)

Ephemeris Data

Ephemeris data UTC epoch: Year, Day of Year, Seconds of Day

Time from epoch (one per sample, nominally 1 Hz)

ECI position estimate (X, Y, Z) (one set per sample)

ECI velocity estimate (Vx, Vy, Vz) (one set per sample)

ECEF position estimate (X, Y, Z) (one set per sample)

ECEF velocity estimate (Vx, Vy, Vz) (one set per sample)

LOR/L1R Data Contents

Image Time Codes (one per line)

Integration Time (one value for MS bands and one value for pan band)

Detector Alignment Fill Table (see note 2)

LDCM-ADEF-001
Version 3



LDCM-ADEF-001
Version 3

7.2.1.4 Outputs

OLI LOS Model (additional detail is provided in Table 1 below)

WGSB84 Earth ellipsoid parameters

Earth Orientation Parameters (for current day) from CPF

Earth rotation velocity

Speed of light

OLI to ACS reference alignment matrix/quaternion

Spacecraft center of mass to OLI offset in ACS reference frame

Focal plane model parameters (Legendre coefs)

Detector delay table (now including whole pixel even/odd and deselect
offsets)

Nominal detector alignment fill table (from CPF)

LOR detector alignment fill table (from LOR)

ECI J2000 spacecraft ephemeris model (original and corrected)

ECEF spacecraft ephemeris model (original and corrected)

Spacecraft attitude model (time, roll, pitch, yaw) (orig and corr) (see note
4)

High frequency attitude perturbations (roll, pitch, yaw) per image line (jitter
table)

Image time codes (see note 5) (in seconds)

Integration Time (MS and pan) (in seconds)

Sample Time (MS and pan) (in seconds)

Settling Time (MS and pan) (in seconds)

WRS Path/Row

Model Trending Data

WRS Path/Row

LORp ID

Work Order ID

Image start UTC time (year, day of year, seconds of day)

Computed image frame time (in seconds)

Number of image lines

Number of out of limit image time codes

7.2.1.5 Options

Trending On/Off Switch
Optional precision model input parameters can be used to force model corrections.

7.2.1.6 Prototype Code
Input to the executable is an ODL file; output is a HDF4 formatted OLI model file.

The prototype code was compiled with the following options when creating the test data files:
-g -Wall -O2 -march=nocona -m32 —mfpmath=sse —msse2

The following text is a brief description of the main set of modules used within the prototype with each
module listed along with a very short description. It should be noted that not all library modules are
referenced in the explanations below. The modules within the main create directory of the prototype
are discussed and any library modules that were determined to be important to the explanation of
either results, input parameters, or output parameters.

model_create — Main procedure that retrieves the input parameters and invokes the model generation
and model output logic.



LDCM-ADEF-001
Version 3

getpar — Retreives the user-provided ODL parameters.
oli_zero_model — Library routine that initializes the model structure.

get_path_row_IOra - Designed to retrieve the WRS path and row numbers from the LOR data. In the
baseline algorithm these are ODL input parameters but they should ultimately be extracted from the
Level OR data directly. This unit is a placeholder for the time being.

oli_run_model — Library routine that loads the CPF, LOR, and preprocessed ancillary data into the
model structure.

oli_get_cpf — Library routine that reads the CPF.

oli_get_model_sensor_params — Library routine that loads the sensor section of the model
structure using data from the CPF and the LOR frame header.

oli_get_model_image_params — Library routine that loads the image section of the model
structure using data from the CPF, the LOR line headers, and the LOR detector offset fields.
This unit also validates the image line time codes.

oli_get _model_earth_params — Library routine that loads the Earth model parameters from the
CPF.

oli_get_ancillary_pre — Library routine that loads the attitude and ephemeris model sections
using data from the preprocessed ancillary data file.

oli_build_jitter_table — Library routine that splits the attitude data from the ancillary data into
low- and high-frequency streams, interpolates the high frequency data to match the OLI
panchromatic band line times, stores this per image line high frequency attitude data in the
jitter table structure, and replaces the original combined attitude data stream with the low-
frequency stream.

remez — Library routine that uses the Remez exchange algorithm to synthesize the
weights (taps) of a low pass finite impulse response digital filter based on input filter size
and cutoff frequency parameters. GNU Public License code written by Jake Janovetz,
formerly of UIUC, which is available online at his site: http://www.janovetz.com/jake/
and more specifically:

http://lwww.janovetz.com/jake/remez/remez-19980711.zip

I8 correct_attitude — Library routine that applies the user-input precision model attitude corrections (if
any).

I8 convert_ephem — Library routine that applies the user-input precision model ephemeris corrections
(if any).

oli_put_model — Library routine that writes the OLI model structure to the output HDF model file.



LDCM-ADEF-001
Version 3
7.2.1.7 Procedure

The LOS model is stored as a structure and is created from information contained in the Level OR or
Level 1R image data, the CPF, and the Ancillary data. The model is subsequently used along with the
CPF to create a resampling grid. Data present in the model structure includes satellite position,
velocity, and attitude, line-of-sight (LOS) angles, timing references, precision correction information (if
any), and the software version. The LOS model is also used in several characterization and
calibration routines for mapping input line/sample locations to geographic latitude/longitude.

The LOS model may be thought of in two parts, an instrument model that provides a line-of-sight
vector for each OLI detector (and, hence, each image line/sample), and a spacecraft model that
provides spacecraft ephemeris (position and velocity) and attitude as a function of time. These
models are linked by the image time stamps that allow each Level OR or Level 1R image sample to
be associated with a time of observation.

7.2.1.7.1 Instrument Model

The model treats every band of every SCA independently. This is done by defining a set of 2" order
Legendre polynomials for each band of each SCA. Since the odd and even detectors are staggered
for each band (Figure 1) as well as there being multiple pixel selects, the set of Legendre polynomials
represent a theoretical “nominal” set of detectors that are best-fit to the even detectors for the first
pixel select. This approach treats the odd detectors and second and third pixel select detectors as
though they were aligned with the even detectors for the first pixel select for purposes of sensor LOS
generation. This approach also explicitly models the slight offsets caused by the actual odd detector
offset, any offsets caused by detector deselect, and the sub-pixel deviations of each detector from its
nominal location, for correction during image resampling. This leads to four detector types: nominal,
actual, maximum, and exact. A nominal detector is calculated from the Legendre polynomials. An
actual detector corrects the nominal detector location for the whole pixel odd/even and pixel select
offsets. For the ALLI, these offsets were band dependent. For the OLI, since individual detectors may
be deselected, they are detector dependent. The maximum detector option uses the largest possible
even/odd and pixel select offset for a given band. This is used to compute detector terrain parallax
sensitivity coefficients when generating the line-of-sight grid. See the LOS Projection/Grid Generation
Algorithm Description Document for additional details. An exact detector has the actual correction
applied but also includes the specific individual (sub-pixel) detector offsets. The Legendre
polynomials and a table of detector offset values are stored in the CPF.

There is a slight angular difference between the line of sight vectors or angles associated with the
odd/even and multiple pixel select detectors. If the nominal LOS, generated using the 2" order
Legendre model, is ynominal, the 0ok angles for the actual and exact detectors are:

Wx_actual = Yx_nominal + round(detector_shift_x) * IFOV
Wy actual = Wy nominal + round(detector_shift_y) * IFOV

Wx_exact = Wx_nominal + detector_shift_x * IFOV
Wy exact = Wy nominal + detector_shift_y * IFOV

The maximum detector case uses the largest possible along-track offset and the nominal across-track
offset, which is zero:
Wx_maximum = Wx_nominal + Maximum_shift_x * IFOV

Wy maximum = Yy nominal



LDCM-ADEF-001
Version 3

X,10,2,3) . (X,10,4,3)
(X,10,2,2)—-_ (X,10,4,2)—,

(X,10,2,1)—_(X,10,4,1)

(X,10,1,1)

+* 00000D000000000000000000000000000000000000000000000000000000000000000000 <3
Q Q

]

000000
00000

L (%10,3,1)—

[ (X,10,1,3) e e ' (X,10,508,3)
%1012 (X,103.2) (X.9,506,3)
E [ (X,9,1,3) ey : ]
(X61.3) — ' (X6506.3)
(X.10,1,3) 33) B [ (X.7.1.3) ( — \ (X,7,5086,3)
(X,3.1.2) —GREENERND T (X.3,506,2)
(X.41.2) “TeoERT . (X,4,506,2)
(X,5,1,2) f MR (BAND-5] ! (X.5.506.2)
(X,1,1,2) — (X,1,506,2)
(X.2.1,2) —— (X,2,506,2)
22 2en (X.8,1,2) - [ (x810122)
l: E (X, XX, X)
(X2.210) . (X24.1) M
PIXEL SELECT(1 OR 2 FOR BANDS 1-5 AND 8)
D (1,2, OR 3 FCR BANDS 6-7, AND 9-10)
(*24.0) . (%2.3.1)
D j [ POSITION(1 TO 506 FOR BANDS 1-7 AND 9-10)
(1 TO 1012 FOR BAND 8)
(*21,2) . (X23.2)
D \ [ BAND NUMBER (1-10)

FPM NUMBER (1-14)
Figure 1: Detector Layout

The detector_shift x and detector_shift_y values are the detector-specific offsets stored in the CPF
detector delay tables. These offsets include both the whole-pixel even/odd and deselect offsets and
the fractional-pixel detector placement effects, and must be rounded to extract the integer portion.
Note that the integer portion of the detector_shift_y value is always zero since the even/odd and
deselect effects are applicable only in the X direction.

The nominal LOS is used in most line-of-sight projection applications. The actual LOS is used in
conjunction with the actual image time (see below) to model the errors introduced by trading time
(sample delay) for space (detector offset) for purposes of correcting the nominal LOS model. The
exact LOS is generally used only for data simulation and other analytical purposes rather than in the
geometric correction model, as the sub-pixel portion of the detector delay is applied directly in the
image resampler rather than being included in the LOS model.

7.2.1.7.2 Sample Timing

The OLI provides a time stamp with each image frame collected. These time stamps make it possible
to relate the image samples (pixels) to the corresponding spacecraft ephemeris and attitude data.
The OLI sample timing relationships are shown in Figure 2. Several items in this figure are worthy of



LDCM-ADEF-001
Version 3

particular note. First, the time stamp associated with a data frame is recorded at the end of the
detector integration time. Second, there is a small settling and sampling delay (MS SS and Pan SS in
the figure) between the end of detector integration and time stamp generation. Third, the time stamps
are delayed by one data frame so that date frame N contains the time stamp for data frame N-1.
Fourth, the data frame associated with time stamp N contains the multispectral (MS) samples
collected just prior to time stamp N as well as the panchromatic samples collected just prior to and
just after time stamp N, rather than the two samples collected prior to time stamp N. This is important
for relating the panchromatic sample timing to the multispectral sample timing.

Time Stamp (N-1}) Time Stamp (N}
MS Int Ms Mms MS Int MS Mms
(N) SS Reset P (N+1) 5SS Reset
Panint |Pan Pan Pan Int Pan Pan Pan Int Pan Pan
(2N) S8 Reset 2(N+1)-1 SS ! Reset 2(N+1) SS Reset

Data Pan | Pan|Blue|C/A |NIR |Red | Grn |Pan | Pan |SW2|SW1| Cir |Dark
Frame |54 |Even Odd |Even
N 2N [ 2N | N | N N N | N PN+12N+1| N N N | N

Figure 2: OLI Focal Plane Electronics Detector Sample Timing Diagram

One further complication to the problem of assigning times to image samples is the fact that the Level
OR/1R input imagery will include fill pixels inserted to achieve nominal even/odd detector alignment.
This fill insertion allows the geometrically unprocessed OR/1R imagery to be viewed as a spatially
contiguous image without even/odd detector misalignments. The amount of detector alignment fill
present will be indicated in the LOR/L1R image data (this is the purpose of the detector alignment fill
table input noted above) so that the association of image samples with their corresponding time
stamps can be adjusted accordingly. In the heritage ALIAS system fill pixels were also inserted to
achieve nominal band alignment. The assumption here is that this will not be done for OLI data.

Due to the staggered odd/even and multiple pixel select detectors, a nominal and an actual time can
be found in a scene. The actual time reflects the time that the current detector was actually sampled
whereas the nominal time reflects the time at which the idealized detector represented by the OLI
LOS model would have been sampled. There is also a “maximum” detector time option used in the
computation of detector terrain parallax sensitivity coefficients during grid generation.

If the current position within the image is given as a line and sample location, the two different “types”
of times for multispectral pixels are calculated by:

if detector_type is set to MAXIMUM

[0r_fill_pixels = nominal_fill_pixels + round(maximum_detector_delay)
else

[0r_fill_pixels = Fill value for current detector from LORp



LDCM-ADEF-001
Version 3

time_index = round( MS_line ) - I0r_fill_pixels + 1
if (time_index <0) time_index =0
if (time_index > (hum_time_stamps - 1)) time_index = num_time_stamps - 1

MS_actual_time = line_time_stamp[time_index] - MS_settle_time

- MS_integration_time/2
+ (MS_line - 10r_fill_pixels — (time_index-1)) * MS_sample_time

MS_nominal_time = MS_actual_time

+ (I0r_fill_pixels — nominal_fill_pixels) * MS_sample_time

where:

MS_line is the zero-referenced multispectral line number (N).

nominal_fill_pixels is the amount of even/odd detector alignment fill to be inserted at the
beginning of pixel columns that correspond to nominal detectors; that is, those detectors
with a delay value of zero that are the basis for the Legendre polynomial LOS model. This
value comes from the CPF.

[0r_fill_pixels is the total amount of even/odd detector alignment fill inserted at the
beginning of the pixel column associated with the current detector in the Level OR image
data. It includes both the nominal_fill_pixels and the detector-specific delay fill required to
align even/odd detectors.

num_time_stamps is the total number of time codes (data frames) in the image. It is tested
to ensure that time_index, the line_time_stamp index, does not go out of bounds.
maximum_detector_delay is a constant offset that represents the largest amount of
even/odd detector offset for any detector from the LOS model detector delay table. It is
rounded to the nearest integer pixel because time offsets can only occur in whole line
increments. The value of this parameter is not critical as the line-of-sight offsets computed
for “maximum” detectors are divided by the maximum delay to compute offset-per-unit-
delay coefficients. This parameter is set in a #define statement.

MS_settle_time is a small sample and hold time delay constant.

The MS_settle_time correction is expected to be a small (tens of microseconds) constant offset that
will be captured in the CPF. The LOR/L1R data can be accessed by SCA making the association of
sample number with detector index more straightforward. Note that the Level OR data inverts the
detector read-out order for the even numbered SCAs so that the samples are numbered left-to-right
for all SCAs (see note 6). This convention is also followed in the CPF detector offset tables. Also note
that the non-imaging detector data (video reference pixels) are stored separately from the image data
in the LOR and are also not modeled in the CPF (see note 7). There are thus 494 samples per SCA in
the multispectral bands and 988 samples per SCA in the panchromatic band.

For the panchromatic band the corresponding equations for a pan detector in the two pan lines (2N
and 2N+1) associated with MS line N (reference Figure 2) are computed as:

if detector_type is set to MAXIMUM
[0r_fill_pixels = nominal_fill_pixels + round(maximum_detector_delay)

else

I0r_fill_pixels = Fill value for current detector from LORp



LDCM-ADEF-001
Version 3

time_index = floor( (round( pan_line ) - 10r_fill_pixels)/2 ) + 1
if (time_index <0) time_index =0
if (time_index > (hum_time_stamps - 1)) time_index = num_time_stamps - 1

Pan_actual_time = line_time_stamp[time_index] - Pan_settle_time
- Pan_integration_time/2
+ (pan_line - 10r_fill_pixels - 2*(time_index-1))*Pan_sample_time

Pan_nominal_time = Pan_actual_time
+ (I0r_fill_pixels — nominal_fill_pixels) * Pan_sample_time

where:

e pan_line is the zero-referenced panchromatic line number (2N or 2N+1).

e nominal_fill_pixels is the amount of even/odd detector alignment fill to be inserted at the
beginning of pixel columns that correspond to nominal detectors; that is, those detectors
with a delay value of zero that are the basis for the Legendre polynomial LOS model. This
value comes from the CPF.

e |0r_fill_pixels is the total amount of even/odd detector alignment fill to be inserted at the
beginning of the pixel column associated with the current detector. It includes both the
nominal_fill_pixels and the detector-specific delay fill required to align even/odd detectors.
Note that these values will always be even for the panchromatic band.

e num_time_stamps is the total number of time codes (data frames) in the image. It is tested
to ensure that time_index, the line_time_stamp index, does not go out of bounds.

e maximum_detector_delay is a constant offset that represents the largest amount of
even/odd detector offset for any detector from the LOS model detector delay table. It is
rounded to the nearest integer pixel because time offsets can only occur in whole line
increments. The value of this parameter is not critical as the line-of-sight offsets computed
for “maximum” detectors are divided by the maximum delay to compute offset-per-unit-
delay coefficients. This parameter is set in a #define statement.

e Pan_settle_time is a small sample and hold time delay constant.

For the panchromatic band, the 10r_fill_pixels, nominal_fill_pixels, and maximum_detector_delay
parameters are in units of panchromatic pixels.

Note that when fill is used to align even and odd detectors the spatial difference between the nominal
and actual look vectors is approximately compensated by the time difference between tnomina @and

tactu al-

Spacecraft Model

The spacecraft ephemeris and attitude models are constructed from the input preprocessed ancillary
data by extracting the ancillary data that span the current image. Both ECI and ECEF versions of the
ephemeris data are retained in the model structure to avoid the need to repeatedly invoke the
ECI/ECEF coordinate system conversion. The ALIAS heritage roll-pitch-yaw representation of the
attitude model is retained in the model structure though a quaternion representation may be used in a
future algorithm revision (see note 4).

Prepare LOS Model Sub-Algorithm



LDCM-ADEF-001
Version 3
This function gathers the information from the preprocessed ancillary data and the Level OR/1R
image data needed to process model data and run the LOS model. Though it has the same overall
purpose and function as the heritage axx_run_alimodel unit, differences in the details of how image
timing and spacecraft telemetry information are provided for LDCM, as compared to EO-1, lead to
extensive changes.

The main steps are:

Load the image time codes and convert to seconds since spacecraft epoch.

Determine the image time window.

Validate/smooth the image time codes.

Extract the multispectral and panchromatic integration times from the Level OR/1R image

frame header data.

Extract the associated ephemeris and attitude data from the preprocessed ancillary data

stream.

6. Preprocess the input attitude data into a low-frequency stream, used for basic geometric
modeling, and a high-frequency stream, used as a fine correction in the image resampler. This
preprocessing was added to improve the ability of the geometric correction system to
compensate for jitter disturbance frequencies above 10 Hz.

N

o

The input preprocessed ancillary data are stored in an HDF file. The attitude and ephemeris ancillary
data streams each have an epoch time identifying the UTC date/time reference. Within these data
streams, each attitude or ephemeris observation in the HDF file has a corresponding time offset
relative to the epoch. This incoming ancillary data stream spans the entire imaging interval containing
the image data represented in the Level OR/1R input data. In creating the model we identify and
extract the ancillary data sequence required to process the current image data.

The input Level OR/1R image data are also packaged in HDF files that include the image samples for
each band and SCA and the time codes assigned to each image line by the OLI instrument. These
spacecraft time codes are provided by the OLI in CCSDS T-Field format which includes days since
epoch (16-bit integer), milliseconds of day (32-bit integer) and microseconds of millisecond (16-bit
integer) fields:

1.1- - 1
e T-Field ]
Day Mzec of Day Microseconds
16 bits 32 bits 16 bits

Figure 3: OLI Time Code Format

Level O processing will combine these raw time code fields to compute time since the spacecraft
epoch in the form: days since spacecraft epoch and seconds of day. Since they are derived from the
spacecraft clock, the image time codes will be based on the same epoch used by the ancillary data
(e.g., TAIl seconds from J2000). Even though the initial time code conversion will occur in Level O
processing, for completeness the processing described below begins with the raw time code fields
shown in figure 3.

Process Image Time Codes
The image time codes are loaded from the input HDF Level OR/1R data set. Even/odd detector
alignment fill may be inserted into the Level OR/1R imagery as described above, so the image lines



LDCM-ADEF-001
Version 3

each contain samples collected at times that may be offset from the time specified by the
corresponding time code. The relationship between these time codes, the OLI integration times, and
the multispectral and panchromatic pixel center times has already been described above. The LORp
data will contain one time code per multispectral image line, excluding fill, or a nominal 6701 time
codes per scene. The image files themselves may be up to 10 lines longer to accommodate the
even/odd detector alignment fill.

A defect in the OLI timing logic can lead to erroneous time codes being generated when the
microseconds or milliseconds fields fail to roll over properly. In the first case, the microseconds field
can reach 1000 and increment the millisecond field without rolling over to zero. In the second case,
the milliseconds field can reach 86400000 and increment the day field without rolling over to zero.
Though these errors should be detected and corrected during Level 0 processing the following time
code validation logic will detect and correct this effect as well as other suspicious time codes.

1. Convert the time codes to seconds from spacecraft epoch:
Line_time = TC_Day*86400 + TC_MSec/1000 + TC_Micro/1e6
Note that an IEEE 754 double precision (64-bit) number with a 52-bit fraction should provide
sufficient precision to represent time differences from 01JAN2000 to 01JAN2050 with
microsecond accuracy (1.6e15 microseconds < 2°51).

2. Validate the image time codes as follows:

a. Loop through the time codes from 1 to N-1, where N is the number of image data
frames/time codes, and test the difference between the current and previous time codes
against the nominal frame time from the CPF using the #define tolerance DTIME_TOL.
The first of two consecutive time codes that are within the tolerance is the first valid time
code.

b. Initialize the OLI clock model by setting the least squares variables to zero: Agy = Aoy =
A]_]_ = Lo = L]_ =0

i. Since the normal equation matrix, A, is symmetric, Ao = Aoz SO it is not computed
separately.

ii. Add the first valid time code observation by adding 1 to Ago. This is all that is
required since, by definition, the index difference and time difference (see below)
are zero at the first valid point.

c. For each subsequent time code:

i. Compare the time difference from the previous time code to the nominal value
using the DTIME_TOL threshold.

ii. If atime code fails this check, see if the special conditions of the known OLI time
code defect apply:

1. If the time code difference deviates from the nominal value by more than
0.5 milliseconds:
a. If the time code microseconds field = 1000, subtract 1000
b. If the time code milliseconds field = 86400000 and the
microseconds field = 0, set the milliseconds field to zero.
c. Recalculate the time code difference

iii. Compare the time code difference to a larger outlier tolerance (OUTLIER_TOL)
chosen to bound the possible drift in the OLI clock relative to the spacecraft clock
(currently set to 50 microsec).

iv. If the time code difference is within the outlier range, add the current time to a
least squares linear OLI clock model:

1. Anum = current index — first valid index



LDCM-ADEF-001
Version 3
2. Atime = current time — first valid time
3. Accumulate:
a. Valid point count:  Ago+=1
b. Index difference:  Ap1 += Anum
c. Squared index diff: Ajz; += Anum*Anum
d. Time difference: Lo += Atime
e. Time diff*index diff: L; += Anum*Atime
d. Once all time codes have been analyzed, solve for the linear OLI clock model
parameters:
i. determinant = Aoo*A11 — Ao1*Ao1
ii. If abs(determinant) <= 0.0 return an error
iii. Offset = first valid time + (A11*Lo — Ao1*L1) / determinant
iv. Rate = (Ago*L1 — Ao1*Lo) / determinant
e. Use the correction model to replace bad time codes:
i. For each time code:
1. Calculate the corresponding model time as:
Mtime = Offset + (current index — first valid index) * Rate
2. Calculate the actual time — model time difference.
Diff = abs( time code — Mtime )
3. Test the difference against DTIME_TOL
4. If the difference exceeds DTIME_TOL, replace the current time code with
the model value, Mtime

f. If no valid time codes were found, return an error.

g. Calculate the average observed frame time, delta_time, by subtracting the first
valid/corrected time code from the last valid/corrected time code and dividing by the
number of time code minus one.

h. Store delta_time (MS frame time) and delta_time/2 (pan frame time) in the model.

3. Set the image start time: image_start = line_time[0]

4. Subtract the image start time from the line time codes so that the times are seconds from
image start.

5. Store the image start UTC epoch (image_year, image_day, image_seconds) and the image
line offset times in the model structure.

6. Report/trend the results of the time code processing including:

a. WRS Path/Row (input parameters)

b. Image UTC epoch (year, day, seconds of day)

c. LOR ID (input parameter)

d. Work order ID (input parameter)

e. Computed frame time (delta_time)

f.  Number of replaced time codes (bad_image_time_count)

7. Check the pan and MS detector integration times in the LORp frame header and if they are
valid (> 0), convert them to units of seconds and load them in the model. Otherwise use the
nominal values from the CPF converted to units of seconds.

8. Load the detector settling times from the CPF into the model after converting them to units of
seconds.

Extract Ancillary Ephemeris and Attitude Data

The subset of ancillary ephemeris and attitude data needed to span the image data are extracted
from the Level OR data by the ancillary data preprocessing algorithm. The logic to do the required
subsetting is reiterated below for reference, since that phase 3 algorithm has not yet been released.



LDCM-ADEF-001
Version 3

These data are read from the input preprocessed ancillary data stream and stored in the model
structure during model creation.

The ephemeris data extraction/subsetting procedure is as follows:

1.

Compute the time offset from the ephemeris epoch time to the desired ephemeris start time for
this image.

ephem_start = image_seconds — ancillary_overlap — ephem_seconds
Noting that image_seconds and ephem_seconds are the seconds of day fields from the image
and ephemeris epoch times, respectively, and ancillary_overlap is the desired extra ancillary
data before and after the image window (set in a #define statement).
Loop through the ephemeris sample times to find the last entry that does not exceed
ephem_start. This is the ephemeris start index (eph_start_index).
Compute the time offset from the ephemeris epoch time to the desired ephemeris stop time for
this image.

ephem_stop = image_seconds + line_time[N-1] + ancillary_overlap — ephem_seconds
Loop through the ephemeris sample times to find the first entry that exceeds ephem_stop. This
is the ephemeris stop index (eph_stop_index).
Compute a new ephemeris UTC epoch for this image:

imgeph_year = ephem_year

imgeph_day = ephem_day

imgeph_seconds = ephem_seconds + ephem_samp_time[eph_start_index]
Load the ECI and ECEF ephemeris samples from eph_start_index to eph_stop_index
(inclusive) into the preprocessed ancillary data output, adjusting the sample times so that they
are offset from the UTC epoch computed in step 5.

The attitude data extraction/subsetting procedure is as follows:

1.

Compute the time offset from the attitude epoch time to the desired attitude start time for this
image.

att_start = image_seconds — ancillary_overlap — att_seconds
Noting that image_seconds and att_seconds are the seconds of day fields from the image and
attitude epoch times, respectively.
Loop through the attitude sample times to find the last entry that does not exceed att_start.
This is the attitude start index (att_start_index).
Compute the time offset from the attitude epoch time to the desired attitude stop time for this
image.

att_stop = image_seconds + line_time[N-1] + ancillary_overlap — att_seconds
Loop through the attitude sample times to find the first entry that exceeds att_stop. This is the
attitude stop index (att_stop_index).
Compute a new attitude UTC epoch for this image:

imgatt_year = att_year

imgatt_day = att_day

imgatt_seconds = att_seconds + att_samp_time[att_start_index]
For Earth-view acquisitions, load the roll-pitch-yaw samples from att_start_index to
att_stop_index (inclusive) into the preprocessed ancillary data output, adjusting the sample
times so that they are offset from the UTC epoch computed in step 5.
For lunar/stellar acquisitions, convert the ECI quaternion samples from att_start_index to
att_stop_index (inclusive) to ECI roll-pitch-yaw values, as described below, and store the
computed roll-pitch-yaw values in the output, adjusting the sample times so that they are offset
from the UTC epoch computed in step 5.



LDCM-ADEF-001
Version 3

Converting ECI Quaternions to Roll-Pitch-Yaw

For lunar and stellar acquisitions, the ECI attitude representation is stored in the model structure. In
the baseline model, this is done by converting the ECI quaternions to roll-pitch-yaw values relative to
the ECI axes. This is one of the motivations for considering a transition to using a quaternion attitude
representation in the model in the future.

The ECI quaternions are converted to roll-pitch-yaw values as follows:
1. Compute the rotation matrix corresponding to the ECI quaternion values:

Macszeci = ]
0,2 -0,% -0, +a,5  2a,0,-050,) 2(a)05 + 050,
2000, +058,)  -0,° 0,7 A2 +q,°  2(0,05-0,0,)

2(0)05 - 9,0) A0 05+ 0ydy) 070, +ag°+a,”

2. Compute the corresponding ACS to ECI roll-pitch-yaw values:

M
roll'= —tan‘l[ij
MZ,Z

pitch'=sin*(M, , )

M
yaw'= —tanl( = }
MO,O

Note that in implementing these calculations it is important to use the ATAN2 rather than
the ATAN arctangent implementation in order to retain the correct quadrants for the Euler
angles. This is not a concern in Earth-view imagery where the angles are always small, but
becomes an issue for these lunar/stellar ACS to ECI angles.

3. Store the ECI roll-pitch-yaw values in the model attitude data table.

At the completion of this sub-algorithm the model structure contains the image frame time stamps, the
multispectral and panchromatic sample, integration, and settling times, the ancillary ephemeris data,
in both ECI and ECEF representations, covering the image, and the ancillary attitude data covering
the image.

Jitter Correction Data Preprocessing

Jitter correction preprocessing operates on the roll-pitch-yaw attitude data stream extracted from the
spacecraft ancillary data to separate the low frequency spacecraft pointing effects from the higher
frequency jitter disturbances. The low frequency pointing model is used for line-of-sight projection and
other geolocation processing while the high frequency jitter effects are applied as per-line corrections
during image resampling. To implement this frequency separation in the line-of-sight model the
original attitude sequence is passed through a low pass filter with a cutoff frequency defined as a
parameter in the CPF. This cutoff frequency will nominally be in the 1 Hz to 10 Hz range. The value
ultimately selected for this cutoff frequency will depend upon the actual disturbance profile observed
in the spacecraft attitude data. The high frequency data stream should be limited in magnitude to sub-



LDCM-ADEF-001
Version 3
pixel (ideally sub-half-pixel) effects, but the lower the cutoff frequency can be, the sparser (and
smaller) the OLI resampling grid can be made in the line (time) dimension.

The low pass filtered version of the attitude sequence is differenced with the original data to construct
the complementary high pass data sequence. The high pass sequence is then interpolated at the
image line times for the OLI panchromatic band to provide a table containing high frequency roll-
pitch-yaw corrections for each image line. This jitter table is stored in the OLI line-of-sight model. The
original attitude sequence in the line-of-sight model is replaced with the low pass filtered sequence to
avoid double counting the high frequency effects. This process is depicted in figure 4.

OLI Model

| Earth Constants |
iﬁﬁﬁ?gaﬂ [ LOS Coefficients |

[ Detector Offsets |
Data | Low Pass X

Eilter l »  Attitude Data |

[ Ephemeris Data |

+ Interpolate {Image Time Codes |
To Image »  JitterTable |
Line Times

Figure 4: Jitter Correction Table Generation Data Flow

The jitter table construction processing sequence is as follows:
1. Extract a copy of the original attitude data sequence from the OLI line-of-sight model.
2. Retrieve the low pass filter cutoff frequency from the CPF.
3. Design a low pass filter with the desired cutoff frequency and apply it to the attitude data.
a. Use the cutoff frequency and attitude data sampling time to compute the size of the
desired filter as follows:
i. Compute the normalized cutoff frequency (the ratio of the cutoff frequency to the
attitude data sampling frequency):
n_cutoff = cutoff_frequency / attitude_sample_frequency
Note that this is the same as:
n_cutoff = cutoff_frequency * attitude_sample_time
ii. Compute the number of samples per cycle at the cutoff frequency:
Nsamp = 1/ n_cutoff
iii. Multiply the number of samples per cycle by 3 and add 1 to yield the desired filter
size:
FSize = 3*Nsamp + 1
iv. If this results in an even filter size, add one:
If ( FSize modulo 2 ==0) FSize = FSize + 1
b. Use the Remez exchange algorithm to design the filter and generate the filter weights.
The standard Parks-McClellan finite impulse response (FIR) digital filter design method
uses the Remez exchange algorithm (ref. Theory and Application of Digital Signal
Processing, Rabiner and Gold, Prentice-Hall, 1975). A C implementation of this
algorithm called remez.c, authored by Jake Janovetz at the University of lllinois, is
available as shareware. This implementation specifies the desired (low pass, in this
case) filter response using the following parameters:
I. Filter size (number of taps) — FSize computed in item a. above.



LDCM-ADEF-001
Version 3

ii. Number of frequency bands to use — 2, one pass band (low frequency) and one
stop band (high frequency).

iii. Band frequency bounds — 0 to the normalized cutoff frequency (n_cutoff) for the
pass band and 1.5*n_cutoff to 0.5 (normalized Nyquist frequency) for the stop
band.

iv. Desired band gains — 1 for pass band (low) and 0 for stop band (high).

v. Band weights (how tightly to constrain the actual filter response to the design
filter response in each band) — 1 for pass band and 10 for stop band.

vi. Filter type — BANDPASS (the low pass filter is a special case of the more general
BANDPASS filter type supported by the remez algorithm.

c. Make sure the synthesized filter is normalized (weights sum to 1) by adding the filter tap
values and dividing each tap by the total.
sum = 2 h[i] where hl[i] are the FSize filter taps.
h’[i] = h[i] / sum for i = 1 to FSize.
d. Convolve the filter with the roll-pitch-yaw attitude data one axis at a time:
half_size = FSize / 2
for index = 0 to num_rpy — 1
low_roll[index] = low_pitch[index] = low_yaw][index] = 0
for ii = -half_size to half_size
if (index+1ii<0)j=-index —Ii
else if (index + ii < num_rpy ) j = index + ii
else j = 2*num_rpy —index - ii— 1
low_roll[index] += roll[j]*h[ii+half_size]
low_pitch[index] += pitch[j]*h[ii+half_size]
low_yaw[index] += yaw[j]*h[ii+half_size]

4. Subtract the low pass filtered sequences from the original sequences to extract the high
frequency portion of the data, and transfer any residual bias (non-zero mean value) from the
imaging portion of the high frequency sequence to the low frequency sequence:

roll_bias = pitch_bias = yaw_bias =0
att pts=0
for index = 0 to nrpy-1
high_roll[index] = roll[index] — low_roll[index]
high_pitch[index] = pitch[index] — low_pitch[index]
high_yaw[index] = yaw[index] — low_yaw[index]
if (image_start_time < attitude_time[index] < image_stop_time )
roll_bias += high_roll[index]
pitch_bias += high_pitch[index]
yaw_bias += high_yaw[index]
att_pts += 1
roll_bias = roll_bias / att_pts
pitch_bias = pitch_bias / att_pts
yaw_bias = yaw_bias / att_pts
for index = 0 to nrpy-1
high_roll[index] -= roll_bias
low_roll[index] +=roll_bias
high_pitch[index] -= pitch_bias
low_pitch[index] += pitch_bias
high_yaw[index] -= yaw_bias
low_yaw[index] += yaw_bias



LDCM-ADEF-001
Version 3
5. Interpolate the high frequency sequence values at the panchromatic band line sampling times
to create the model jitter table:
For each panchromatic image line = 0 to number of pan lines:
Compute the line sampling time as:
index =line /2
pan_time = line_time_stamp[index] - pan_settle_time
- pan_integration_time/2
+ (line - 2*time_index)*pan_sample_time
Convert to time from attitude epoch:
pan_time +=image_epoch — attitude _epoch
Interpolate high frequency roll-pitch-yaw values at this time using four point
Lagrange interpolation:
Compute starting index for interpolation:
index = floor(pan_time / attitude_sample_time) — 1
Compute the fractional sample offset to the pan line time:
w = pan_time / attitude_sample_time — index — 1
Compute the Lagrange weights:
wl=-w*w-1)*(w-2)/6
w2=w+1)*(w-1)*(w-2)/2
w3d=-w*(w+1)*(w-2)/2
wi=(w+1)*w*(w-1)/6
Interpolate:
roll = high_roll[index]*w1 + high_roll[index+1]*w2
+ high_roll[index+2]*w3 + high_roll[index+3]*w4
pitch = high_pitch[index]*w1 + high_pitch[index+1]*w2
+ high_pitch[index+2]*w3 + high_pitch[index+3]*w4
yaw = high_yaw[index]*w1 + high_yaw[index+1]*w2
+ high_yaw[index+2]*w3 + high_yaw[index+3]*w4
6. Replace the original model attitude data sequence with the low pass filtered attitude data
sequence.

Process LOS Model Sub-Algorithm

This function loads the LOS Legendre polynomial coefficients and other model components from the
CPF, and performs additional processing on the attitude and ephemeris information in the LOS model
structure. It invokes the following sub-algorithms.

Read CPF Model Parameters Sub-Algorithm

This function loads model components from the CPF. In the heritage ALIAS implementation some of
these model components either did not exist (e.g., instrument offset from spacecraft center of mass)
or were used for image resampling but not LOS model computations (e.g., detector offset table) and
so, were not included in the model. These are included in the OLI model to make it self-contained for
purposes of line-of-sight computations.

Key CPF parameters loaded into the geometric model include:

1. Earth orientation parameters — the UT1UTC and pole wander (x,y) parameters for the current
day are stored in the model to avoid the necessity of repeatedly looking them up in the CPF.
WGS84 ellipsoid parameters (semi-major and semi-minor axes and eccentricity) are also
extracted from the CPF as are physical constants such as the Earth rotation velocity and the
speed of light.



LDCM-ADEF-001
Version 3
. OLI offset from spacecraft center of mass — a 3-vector that captures the small offset, in
spacecraft body coordinates, between the OLI instrument, where images are captured, and the
spacecraft center of mass, the position of which is reported in the ancillary ephemeris data,
making it possible to translate the ephemeris data to the OLI. Technically, this would be the
vector from the spacecraft center of mass to the center of the OLI entrance pupil. Note that this
formulation assumes that the spacecraft on-board GPS data processing includes the GPS to
spacecraft center of mass (CM) offset and that the spacecratft is, in fact, reporting CM positions
not GPS antenna positions. If the ephemeris represents the GPS antenna location then we
would need to know the spacecraft CM to GPS antenna offset as well.
. OLI to attitude control system (ACS) alignment matrix — a 3-by-3 matrix that captures the
relative orientation of the OLI coordinate system to the ACS coordinate system, making it
possible to rotate the OLI instrument-space line-of-sight vectors into the ACS reference
system. In the heritage ALIAS system this was actually represented in the CPF by an ACS to
instrument rotation matrix which was inverted for each LOS model invocation. Whichever
convention is used in the CPF, the LOS model should store the OLI-to-ACS rotation matrix.
. OLI sensor parameters including the nominal detector sampling rate, integration times (pan
and MS), settling times (pan and MS), and instantaneous fields of view (IFOVs), as well as the
number of bands, SCAs per band, detectors per SCA, and nominal detector fill values.
. OLI line-of-sight Legendre polynomials — a set of 6 coefficients (3 along-track and 3 across-
track) for each band on each SCA. Each set of 3 forms a 2" order Legendre polynomial that is
used to evaluate a nominal LOS angle (along- or across-track) for the detectors in that band on
that SCA. This is the heritage ALIAS implementation (see the Read LOS Vectors Sub-
Algorithm description below).
. OLI detector delay table — a table consisting of two values (along- and across-track) per
detector reflecting the offset of each actual detector from its nominal location (as modeled by
the 2" order Legendre polynomials — see below). In the heritage ALIAS implementation these
were small sub-pixel offsets that were applied in the image resampling procedure. With the
OLlI, this table will also contain the even/odd detector offsets as well as any offsets due to
detector deselect (i.e., the operational use of a detector from one of the redundant rows). The
even/odd offset had been modeled separately as a single value for each band, but the
possibility of per-detector deselect offsets led to their inclusion in the per-detector offset table.
This table is therefore needed in those LOS projection algorithms that utilize either actual
(whole pixel offsets) or exact (full sub-pixel offsets) detector locations.

Read LOS Vectors Sub-Algorithm

This function retrieves the line of sight vectors from the CPF. The line of sight vectors are stored as
sets of 2nd order Legendre polynomial coefficients. There is a unique set of 6 coefficients for each
band of each SCA, 3 for the along-track polynomial and 3 for the across-track polynomial. These
values are read from the CPF and stored in the LOS model. The polynomials are used to compute
along- and across-track viewing angles for each nominal detector.

Initialize the Precision Model Sub-Algorithm

This function initializes the precision LOS correction model parameters. If the optional precision
model input parameters are provided, those values are used. In the normal case, those parameters
are absent and the correction model is initialized as follows:

Set the precision correction reference time to the beginning of the scene:
t ref=0.0



LDCM-ADEF-001
Version 3
Set the ephemeris correction model order to zero: eph_order =0
Set both ephemeris X correction parameters to zero:
x_corr[0] = 0.0, x_corr[1] = 0.0
Set both ephemeris Y correction parameters to zero:
y_corr[0] = 0.0, y_corr[1] =0.0
Set both ephemeris Z correction parameters to zero:
z_corr[0] = 0.0, z_corr[1] = 0.0
Set the attitude correction model order to zero: att_order =0
Set all three attitude roll correction parameters to zero:
roll_corr[0] = 0.0, roll_corr[1] = 0.0, roll_corr[2] = 0.0
Set all three attitude pitch correction parameters to zero:
pitch_corr[0] = 0.0, pitch_corr[1] = 0.0, pitch_corr[2] = 0.0
Set all three attitude yaw correction parameters to zero:
yaw_corr[0] = 0.0, yaw_corr[1] = 0.0, yaw_corr[2] = 0.0

Note that these parameters are used to compute the corrected ephemeris and attitude data
sequences which are also stored in the model. The parameters themselves are included in the model
primarily to document the magnitude of the corrections applied and to facilitate more advanced uses
of the model creation logic. For example, it is sometimes useful to be able to force a particular model
bias (e.g., a roll angle) into a model that is to be used for data simulation (see note 9). So, though not
strictly necessary for operational data processing, these parameters aid in anomaly resolution, data
simulation, and algorithm development. In normal operations, these initial correction parameters are
all zero and the "corrected" attitude and ephemeris data sequences are identical to the "original”
attitude and ephemeris data prior to the execution of the LOS model correction algorithm.
Subsequent algorithms (e.g., LOS projection) operate on the corrected data.

Correct Attitude Sub-Algorithm

This function applies the ACS/body space attitude corrections computed by the LOS/precision
correction procedure to the attitude data sequence. It outputs a parallel table of roll-pitch-yaw values
with the precision corrections applied. In the model creation context the precision corrections are zero
so the two sets of attitude data are identical. Though applying the precision corrections to construct
the corrected attitude sequence could be said to be overkill for model creation (since the corrections
are nominally zero at this point) this capability is required for LOS model correction and is used here
to support the use of the model creation algorithm for data simulation and anomaly resolution as it
makes it possible to force initial biases into the model. This sub-algorithm will also be used by the
LOS/precision correction algorithm to create the precision model. Note that the formulation is
somewhat different for Earth-view scenes (Acquisition Type = Earth) than it is for lunar and stellar
observations.

Earth Scenes
For Earth-view scenes the sequence of transformations required to convert a line-of-sight in the OLI
instrument coordinate system, generated using the Legendre polynomials, is:

Xecer = Mors2ecer Macs2ore Mprecision MoLizacs Xoli

where: Xou is the Legendre-derived instrument LOS vector
MoLi2acs is the OLI to ACS alignment matrix from the CPF
Meprecision IS the correction to the attitude data computed by the LOS/precision
correction procedure



LDCM-ADEF-001
Version 3
Macs2ors IS the spacecraft attitude (roll-pitch-yaw)
Mors2ecer IS the orbital to ECEF transformation computed using the ECEF
ephemeris
Xecer IS the LOS vector in ECEF coordinates

Note that in the heritage ALIAS implementation the sequence was:

Xecer = More2ecer Mprecision Macs2ore MoLizacs Xoll

For nadir-viewing imagery the Macs2ors matrix is nearly identity, so there is little difference. Since OLI
will occasionally be viewing off-nadir and it is more natural to model attitude errors in the ACS/body
coordinate system, the order has been reversed for LDCM. The impact is minimal in the model and
LOS projection but becomes more important for the LOS/precision correction algorithm.

This new sub-algorithm pre-computes the Macs2ors Mprecision COmMbination and stores the
corresponding corrected roll-pitch-yaw attitude sequence in the model structure. This approach has
several advantages:

1. It streamlines the application of the model for LOS projection by removing the step of explicitly
applying the precision correction.

2. It allows for the use of a more complex correction model in the future since the application of
the model is limited to this unit. Note that the Earth-view attitude correction model consists of
the following model parameters:

Precision reference time: t_ref in seconds from the image epoch (at the center of the
image time window)
Attitude model order: att_order = 2
Roll bias and rate corrections: roll_corr[] = roll_bias, roll_rate
Pitch bias and rate corrections: pitch_corr[] = pitch_bias, pitch_rate
Yaw bias and rate corrections: yaw_corr[] = yaw_bias, yaw_rate
This model is dealt with in more detail in the line-of-sight correction algorithm description.

3. Retaining both the original and corrected attitude sequences in the model make the model self-
contained and will make it unnecessary for the LOS/precision correction algorithm to access
the preprocessed ancillary data.

The disadvantage is that it doubles the size of the attitude data in the model structure.

The construction of the corrected attitude sequence proceeds as follows:
For each point in the attitude sequence j = 0 to K-1:
1. Compute the rotation matrix corresponding to the j™ roll-pitch-yaw values:
Macsz20re =
cos(p)cos(y) sin(r)sin(p)cos(y) + cos(r)sin(y) sin(r)sin(y) —cos(r)sin(p)cos(y)
—cos(p)sin(y) cos(r)cos(y) —sin(r)sin(p)sin(y) cos(r)sin(p)sin(y) + sin(r) cos(y)
sin(p) —sin(r) cos(p) cos(r) cos(p)
2. Compute the precision correction at the time (t_att = att_seconds + att_time[j])
corresponding to the attitude sample:

att_order1 .
a. roll_correction = Zroll_corr[i]*(t_att —t ref —image_seconds)'
i=0
att_order1 .
b. pitch_correction = Zpitch_corr[i]*(t_att —t ref —image_seconds)'
i=0



LDCM-ADEF-001
Version 3

att_orderl
c. Yyaw_correction = Zyaw_corr [i]*(t_att —t_ref —image_seconds)'
i=0
Note that only the seconds of day fields are needed for the attitude and image epochs as they
are constrained to be based on the same year and day.
3. Compute the rotation matrix corresponding to roll_correction (r), pitch_correction (p), and
yaw_correction (y) (Mprecision) USiNg the same equations presented in step 1 above.
4. Compute the composite rotation matrix: M = Macszors Mprecision
5. Compute the composite roll-pitch-yaw values:

M
roll'= —tanl[ “J
M2,2

pitch'=sin (M, ,)

M
yaw'= —tan‘l( L0 ]
MO,O

6. Store the composite roll’-pitch’-yaw’ values in the j" row of the corrected attitude data table.

Lunar and Stellar Scenes
For celestial (lunar or stellar) observations the sequence of transformations required to convert a line-
of-sight in the OLI instrument coordinate system, generated using the Legendre polynomials, is:

Xeci = Macs2eci Mprecision Movizacs Xo

where: Xou is the Legendre-derived instrument LOS vector
Movi2acs is the OLI to ACS alignment matrix from the CPF
Merecision IS the correction to the attitude data computed by the LOS/precision
correction procedure
Macszeci is the spacecraft attitude in the ECI frame derived from the ECI
guaternions in the preprocessed ancillary data
Xeci is the LOS vector in ECI coordinates

The advantage of modeling the precision attitude corrections in ACS rather than orbital coordinates
becomes apparent here, since the orbital frame is not used in the lunar case.
This sub-algorithm pre-computes the Macs2eci Mprecision COMbination and stores the corresponding
corrected attitude sequence (as roll-pitch-yaw values relative to ECI) in the model structure. Another
difference between the Earth-view and lunar/stellar models is in the formulation of the precision
model. The lunar attitude correction model adds an acceleration term to the Earth-view correction
model parameters:
Precision reference time: t_ref in seconds from the image epoch (nominally near the center of
the image time window)
Attitude correction model order: att_order = 3
Roll bias, rate, and acceleration corrections: roll_corr[] = roll_bias, roll_rate, roll_acceleration
Pitch bias, rate, and acceleration corrections: pitch_corr[] = pitch_bias, pitch_rate,
pitch_acceleration
Yaw bias, rate, and acceleration corrections: yaw_corr[] = yaw_bias, yaw_rate,
yaw_acceleration



LDCM-ADEF-001
Version 3
Due to the different orders of the Earth-view and lunar correction models, this model is stored as an
array in the model structure along with a field defining the model order. The precision model is dealt
with in more detail in the line-of-sight correction algorithm description.

The processing steps to construct the corrected attitude sequence is the same for lunar/stellar
acquisitions, although the interpretation of the roll-pitch-yaw values is slightly different, and proceeds
as follows:
For each point in the attitude sequence j = 0 to K-1:
1. Compute the rotation matrix corresponding to the j" ECI roll-pitch-yaw values:
Macs2eci =

cos(p)cos(y)  sin(r)sin(p)cos(y) + cos(r)sin(y) sin(r)sin(y) — cos(r)sin(p) cos(y)
—cos(p)sin(y) cos(r)cos(y) —sin(r)sin(p)sin(y) cos(r)sin(p)sin(y) + sin(r) cos(y)
sin(p) —sin(r) cos(p) cos(r) cos(p)

7. Compute the precision correction at the time (t_att = att_seconds + att_time[j])
corresponding to the attitude sample:

att_order1 .
a. roll_correction = Zroll_corr[i]*(t_att —t ref —image_seconds)'
i=0
att_orderl )
b. pitch_correction = Zpitch_corr[i]*(t_att —t_ref —image_seconds)'
i=0
att_orderl .
c. yaw_correction = Zyaw_corr [i]*(t att —t ref —image_seconds)'
i=0
Note that only the seconds of day fields are needed for the attitude and image epochs as they
are constrained to be based on the same year and day.
2. Compute the rotation matrix corresponding to roll_correction (r), pitch_correction (p), and
yaw_correction (y):

Mprecision =
cos(p)cos(y)  sin(r)sin(p)cos(y) + cos(r)sin(y) sin(r)sin(y) —cos(r)sin(p)cos(y)
—cos(p)sin(y) cos(r)cos(y) —sin(r)sin(p)sin(y) cos(r)sin(p)sin(y) + sin(r) cos(y)
sin(p) —sin(r) cos(p) cos(r) cos(p)

3. Compute the composite rotation matrix: M = Macszeci Mprecision
4. Compute the composite ACS to ECI roll-pitch-yaw values:

M
roll'= —tanl[ “J
M2,2

pitch'=sin (M, ,)

M
yaw'= —tan‘l( L0 ]
MO,O

Note that in implementing these calculations it is important to use the ATAN2 rather than
the ATAN arctangent implementation in order to retain the correct quadrants for the Euler
angles. This is not a concern in Earth-view imagery where the angles are always small, but
becomes an issue for these lunar/stellar ACS to ECI angles.

5. Store the composite roll-pitch’-yaw’ values in the j" row of the corrected attitude data table.




LDCM-ADEF-001
Version 3

Correct Ephemeris Sub-Algorithm
The heritage ALIAS function converts the ephemeris information (position and velocity) from the Earth
Centered Inertial (ECI J2000) system to the Earth Centered Earth Fixed (ECEF) system and applies
the ephemeris corrections computed in the LOS/precision correction procedure to both ephemeris
sets. Since both ECI and ECEF representations of the ephemeris are now provided by the ancillary
data preprocessing algorithm, the first portion of the heritage algorithm is no longer necessary (or
could be reused in the ancillary data preprocessing algorithm). Though applying the precision
corrections to construct the corrected ephemeris sequence could be said to be overkill for model
creation (since the corrections are nominally zero at this point) this capability is required for LOS
model correction and is used here to support the use of the model creation algorithm for data
simulation and anomaly resolution as it makes it possible to force initial biases into the model. This
sub-algorithm will also be used by the LOS/precision correction algorithm to create the precision
model.

The precision correction parameters are stored in the LOS model in the spacecraft orbital coordinate
system as three position (x_bias, y_bias, z_bias) corrections and three velocity (x_rate, y_rate,
z_rate) corrections that, like the attitude corrections, are relative to t_ref. These values must be
converted to the ECEF and ECI coordinate systems. Once the precision correction is determined in
the ECEF/ECI coordinate system, the ECEF/ECI ephemeris values can be updated with the precision
parameters.

Loop on LOS model ephemeris points j = 0 to N-1
Compute the precision correction:

Calculate delta time for precision correction:
dtime = ephem_seconds + ephem_time[j] — t_ref — image_seconds

Calculate the change in X, Y, Z due to precision correction. Corrections are in terms of
spacecraft orbital coordinates.

dx orb = model precision x_corr[0] + model precision x_corr[1] * dtime
dy orb = model precision y_corr[0] + model precision y_corr[1] * dtime
dz orb = model precision z_corr[0] + model precision z_corr[1] * dtime

where:

model precision x_corr[0] = precision (orbital) update to X position
model precision y_corr[0] = precision (orbital) update to Y position
model precision z_corr[0] = precision (orbital) update to Z position
model precision x_corr[1] = precision (orbital) update to X velocity
model precision y_corr[1] = precision (orbital) update to Y velocity
model precision z_corr[1] = precision (orbital) update to Z velocity

Construct precision position and velocity “delta” vectors.
dx orb

[dorb]=| dy orb
dz orb



LDCM-ADEF-001
Version 3

model precision x_corr[1]
[dvorb] = | model precision y_corr[1]
model precision z_corr[1]

Calculate the orbit to ECF transformation [ORB2ECEF] using ECEF ephemeris (See the
ancillary data preprocessing ADD for this procedure).

Transform precision “delta” vectors to ECEF.

[def | = [ORB2ECEF [dorb]

[dvef | = [ORB2ECEF [dvorb]

Adjust ECEF ephemeris by the appropriate “delta” precision vector and store the new
ephemeris in the model. These ephemeris points will be used when transforming an input
line/sample to an output projection line/sample.

model ef postion=ephemeris ecef postion+ decf

model ef velocity = ephemeris ecef velocity + dvecf

where:
All parameters are 3x1 vectors
ephemeris ecef values are the interpolated one-second ephemeris values in
ECEF coordinates

Calculate the orbit to ECI transformation [ORB2ECI] using ECI ephemeris.
Transform precision “delta” vectors to ECI.

[deci | = [ORB2ECI]dorb]

[dveci]= [ORB2ECI ]dvorb]

Adjust ECI ephemeris by the appropriate “delta” precision vector and store the new ephemeris
in the model. These ephemeris points will be used with lunar/stellar observations.

model eci postion = ephemeris eci postion-+ deci

model eci velocity = ephemeris eci velocity + dveci

where:
All parameters are 3x1 vectors
ephemeris eci values are the interpolated one-second ECI ephemeris

Move Satellite Sub-Algorithm



LDCM-ADEF-001
Version 3
This function computes the satellite position and velocity at a delta time from the ephemeris reference
time using Lagrange interpolation. This is a utility sub-algorithm that accesses the model ephemeris
data to provide the OLI position and velocity at any specified time. Since the model ephemeris arrays
are inputs to this sub-algorithm it will work with either the ECI or ECEF ephemeris data.

Table 1 below summarizes the contents of the LOS model structure. The estimated size of this
structure is approximately 1.5 megabytes.

LOS Model Structure Contents
Satellite Number (8)
Format Version Number (for documentation and backward compatibility)
WRS Path
WRS Row (may be fractional)
Acquisition Type (Earth, Lunar, Stellar)
Earth Parameters

UT1UTC Correction (in seconds)

Pole Wander X Correction (in arc seconds)

Pole Wander Y Correction (in arc seconds)

WGS84 Ellipsoid Semi-Major Axis (in meters)

WGS84 Ellipsoid Semi-Minor Axis (in meters)

WGS84 Ellipsoid Eccentricity (dimensionless)

Earth Angular Velocity (radians/second)

Speed of Light (meters/second)
Image Model

Number of image lines

Image UTC epoch: image_year, image day, image_seconds

For each line: frame time offset (in seconds) from image epoch

For each line: roll, pitch, yaw high frequency jitter correction (in radians)

Nominal alignment fill table (from CPF) one value per band per SCA (in
pixels)

Detector alignment fill table (from LOR/L1R) one value per detector (in pixels)
Sensor Model

OLI to ACS reference alignment matrix [3x3]

Spacecraft center of mass to OLI offset in ACS reference frame [3x1] in
meters

Integration Times (MS and pan) in seconds

Computed Sample Times (MS and pan) in seconds

Detector Settling Times (MS and pan) in seconds

Number of SCAs (14)

Number of Bands (9)

Along-Track IFOVs (MS and pan) in radians

Across-Track IFOVs (MS and pan) in radians

Number of Detectors per SCA Per Band (9x1 array)

Focal plane model parameters (Legendre coefs) [NSCAXNBANDx2x3] (in
radians)

Detector delay table [NSCAXNBANDx2xXNDET] (in pixels)
Ephemeris Model

Scene ephemeris data UTC epoch: imgeph_year, imgeph_day,
imgeph_seconds

Number of ephemeris samples

Time from epoch (one per sample, nominally 1 Hz) (in seconds)

Original ECI position estimate (X, Y, Z) (one set per sample) (in meters)

Original ECI velocity estimate (Vx, Vy, Vz) (one set per sample) (in
meters/sec)

Original ECEF position estimate (X, Y, Z) (one set per sample) (in meters)




LDCM-ADEF-001
Version 3

Original ECEF velocity estimate (Vx, Vy, Vz) (one set per sample) (in
meters/sec)

Corrected ECI position estimate (X, Y, Z) (one set per sample) (in meters)

Corrected ECI velocity estimate (Vx, Vy, Vz) (one set per sample) (in
meters/sec)

Corrected ECEF position estimate (X, Y, Z) (one set per sample) (in meters)

Corrected ECEF velocity estimate (Vx, Vy, Vz) (one set per sample) (in
meters/sec)
Attitude Model

Scene attitude data UTC epoch: imgatt year, imgatt day, imgatt seconds

Number of attitude samples

Time from epoch (one per sample, nominally 50 Hz) (in seconds)

Original Roll, pitch, yaw estimate (one per sample) (in radians)

Corrected Roll, pitch, yaw estimate (one per sample) (in radians)
Precision Correction Model

Precision reference time (t_ref) seconds from image epoch

Ephemeris correction order: eph_order (0 none, 2 for Earth-view and
lunar/stellar)

X correction model: x_bias, x_rate (meters, meters/sec)

Y correction model: y bias, y rate (meters, meters/sec)

Z correction model: z_bias, z_rate (meters, meters/sec)

Attitude correction order: att_order (0 none, 2 for Earth, 3 for lunar/stellar)

Roll correction model: roll_bias, roll _rate, roll_acc (rad, rad/sec, rad/sec?)

Pitch correction model: pitch_bias, pitch_rate, pitch_acc (rad, rad/sec,
rad/sec?)

Yaw correction model: yaw_bias, yaw rate, yaw_acc (rad, rad/sec, rad/sec?)

Table 1: LOS Model Structure Contents

Note that in the precision correction model only the first att_order correction model array elements are
valid. For example, for Earth-view scenes att_order = 2 and roll_corr[0] = roll_bias, roll_corr[1] =
roll_rate and roll_corr[2] is not used.



LDCM-ADEF-001
Version 3
7.2.2 OLI Line-of-Sight Projection/Grid Generation Algorithm

7.2.2.1 Background/Introduction

The line-of-sight (LOS) projection and grid generation algorithm uses the OLI LOS model, created by
the LOS model creation algorithm, to calculate the intersection of the projected lines-of-sight from
selected OLI detector samples (pixels) with an Earth model (WGS84). The spacecraft position and
pointing, OLI instrument alignment and offset information, and image timing data contained in the
LOS model are used to construct the LOS for an individual OLI detector at a particular sample time.
We then calculate the location where that line of sight intersects the Earth’s surface, as defined by the
WGS84 Earth ellipsoid or a specified elevation above or below that ellipsoid. LOS intersections for an
array of detector samples that span each OLI SCA/FPM and spectral band are computed at the
WGS84 ellipsoid surface as well as at a range of elevation levels selected to span the actual terrain
elevations found in the image area. The resulting array of projected lines-of-sight forms a three-
dimensional grid of input (Level 1R) image pixel line/sample to output space (Level 1G) mappings
that can be used to interpolate input/output pixel mappings for intermediate points. The resulting
ability to rapidly compute input/output mappings greatly facilitates image resampling.

The LOS projection and grid generation algorithm can also work in an “inertial direction” mode in
which the output space is in angular units with respect to a set of reference inertial directions. This
mode is used to process lunar data wherein the inertial coordinates (declination and right ascension)
of the moon, computed from a planetary ephemeris, are used as the reference to define the output
image frame. In this case the lines-of-sight are computed in inertial coordinates but are not projected
to the Earth’s surface.

Concerns about the temporal (line direction) grid density that would be required to adequately capture
attitude deviations (jitter) at frequencies above 10 Hz motivated the addition of new grid functionality
to support high frequency image correction at image resampling time. Specifically, jitter sensitivity
coefficients were added to each grid cell to allow the high frequency attitude data in the OLI line-of-
sight model jitter table to be converted to corresponding input image space line/sample offsets. These
coefficients are used by the resampler to compute high frequency line/sample corrections that refine
the output-to-input space image coordinate mappings provided by the grid. This allows the grid to
model only lower frequency effects making a sparser grid sampling in the time (line) direction
possible.

Due to layout of the OLI focal plane, there are along-track offsets between spectral bands within each
SCA, along-track offsets between even and odd SCAs, and a reversal of the band ordering in
adjacent SCAs. This leads to an along-track offset in the imagery coverage area for a given band
between odd and even SCAs as well as an offset between bands within each SCA. To create more
uniform image coverage within a geometrically corrected output product, the leading and trailing
imagery associated with these offsets is trimmed (at image resampling time) based on image active
area bounds stored in the grid.

7.2.2.2 Dependencies

The OLI LOS projection and grid generation algorithm assumes that the OLI LOS model creation
algorithm has been executed to construct and store the OLI LOS model.



LDCM-ADEF-001
Version 3
7.2.2.3 Inputs

The LOS projection and grid generation algorithm and its component sub-algorithms use the inputs
listed in the following table. Note that some of these “inputs” are implementation conveniences (e.g.,
using an ODL parameter file to convey the values of and pointers to the input data).

Algorithm Inputs

ODL File (implementation)

CPF File Name

LOS Model File Name

DEM File Name

NOVAS Planetary Ephemeris File Name (for lunar processing)

Output Image Framing Parameters:

WRS Path for path-oriented scene framing (not necessarily the LOS model
path)

WRS Row for path-oriented scene framing (not necessarily the LOS model
row)

Map Projection (UTM, SOM, PS)

UTM Zone (use 0 to have code compute the zone)

Map Projection Parameters

Output Pixel Size(s)

Output Image Orientation

Frame Type (e.g., MINBOX)

Frame Bounds (e.g., corner coordinates, image size)

Grid Options:

Bands to Grid

CPF file contents

Thresholds and Limits (replaces System Table)

Grid Density (line/sample/height)

Default (WGS84) Spheroid parameter and Datum Codes

Scene framing band priority list

OLI LOS Model file contents (see LOS Model Creation ADD for additional
detail)

WGS84 Earth Ellipsoid parameters

Earth Angular Velocity (rotation rate) in radians/second

PAN and MS settling times

Speed of light (in meters/second)

Acquisition Type (Earth, Lunar, Stellar)

OLI to ACS reference alignment matrix

Spacecraft CM to OLI offset in ACS reference frame (new)

Focal plane model parameters (Legendre coefs)

Detector delay table

Smoothed ephemeris at 1 second intervals (original and corrected)

Low pass filtered attitude history (original and corrected)

High frequency attitude perturbations (roll, pitch, yaw) per image line (jitter
table)

Image time codes

Integration Time (MS and Pan)

OLI MS and pan detector settling times (msec)

Nominal detector alignment fill table

LOR detector alignment Fill Table

DEM file contents

Min and Max Elevation

NOVAS Planetary Ephemeris file contents

JPL Ephemeris Table (DE405) for celestial bodies (i.e., the moon) (see note
1)




LDCM-ADEF-001
Version 3
7.2.2.4 Outputs

OLI Grid (see Tables 1 and 2 below for detailed grid structure contents)

Grid Header (WRS path/row, acquisition type)

Output Image Framing Information (corner coordinates, map projection)

Image active area latitude/longitude bounds (for each band)

Grid Structure Information (number of bands/SCAs)

Grid Structures (one per SCA, per band)

Band number

Image dimensions (line/sample)

Pixel size

Grid cell size (image lines/samples per cell)

Grid dimensions (# rows/# columns/# Z-planes)

Z-plane zero reference and height increment

Arrays of input line/sample grid point coordinates

Arrays of output line and sample grid point mappings

Arrays of even/odd offset coefficients (2 per grid cell)

Arrays of forward (input/output) mapping polynomials (8 per grid cell per Z-plane)

Arrays of inverse (output/input) mapping polynomials (8 per grid cell per Z-plane)

Arrays of roll-pitch-yaw jitter line sensitivity coefficients (3 per grid cell per Z-
plane)

Arrays of roll-pitch-yaw jitter sample sensitivity coefficients (3 per grid cell per Z-
plane)

Rough mapping polynomials (one set per Z-plane)

7.2.2.5 Options

A NOVAS planetary ephemeris file (JPL DE405) must be provided when the Acquisition Type (in the
LOS model) is Lunar.

7.2.2.6 Prototype Code
Input to the executable is an ODL file; output is a HDF4 formatted resampling grid file.

The prototype code was compiled with the following options when creating the test data files:
-g -Wall —02 -march=nocona -m32 —mfpmath=sse —msse2

The following text is a brief description of the main set of modules used within the prototype with each
module listed along with a very short description. It should be noted that not all library modules are
referenced in the explanations below. The modules within the main oligrid directory of the prototype
are discussed and any library modules that were determined to be important to the explanation of
either results, input parameters, or output parameters.

oligrid

Main driver for generating the resampling grid. Calls modules to retrieve user parameters, establish
the output image frame extent, and populate the grid structure with appropriate input to output, and
output to input, mapping parameters.

get_parms

This routine opens the input ODL parameter file, reads the grid parameters, closes the parameter file,
and returns the parameters. Also will read the DEM, if the DEM is given as an input parameter, and
determine the elevation extent within the DEM file. This elevation extent will then be used for
establishing the z-plane parameters within the grid structure.



LDCM-ADEF-001
Version 3

oli_get_model
Reads the OLI geometric model file and populates data within the OLI geometric model structure.

read_num_Is |Ora

This routine extracts the number of image lines from the Level 1R image and the number of samples
per band per SCA from the sensor model portion of the LOS model. The routine then returns the
number of lines and samples for the input band numbers. These values, along with the grid cell size,
will be used to determine grid point locations. The number of lines and samples will be returned in
their respective arrays, in band-referenced order. This is similar to the manner in which the grid is
stored. Thus the nlines and nsamps arrays must be of size nbands.

det_ num_grid_Is
This routine will determine the number of input points to be stored in the grid according to the grid
sampling rate or grid cell size chosen.

validate_utm_zone

This routine validates the UTM zone that was entered as an ODL parameter. The scene center
longitude will be used for this verification. The nominal UTM zone to use is computed from the scene
center longitude but the projection may be forced to an adjacent zone using input parameters. In
particular, each WRS path/row may be preassigned to a UTM zone so that the same zone is always
used for scenes near UTM zone boundaries. This should not introduce a zone offset greater than 1.
The validation is performed by computing the UTM zone in which the scene center falls and then
determining whether the input UTM zone (if any) is within one zone of the nominal zone.

oli_malloc_grid
Allocates memory for the grid based on image size and output elevation extent.

setup_jpl_solarsystem
Initializes JPL routines needed to determine position of the moon. Only used for lunar acquisitions.

calc_active_area

This routine determines the bounds of that portion of the output image frame that contains actual OLI
imagery, excluding "ragged" band/SCA edges. The resulting active area bounds for each spectral
band are stored in the grid for subsequent use by the image resampling logic.

north_up

This routine will determine the frame in output space for the north-up product. The actual frame is based on the
output band's pixel size, but the frame is the same for every band. The method used to determine the scene
corners depends on whether the corners were user input (PROJBOX) or calculated by projecting the Level 1R
image corners (MAXBOX) but the framing logic is essentially the same in each case. Once given as input, or
computed, the latitude/longitude scene corners are converted to the defined map projection, the extreme X and
Y coordinates are found, and these extreme points are rounded to a whole multiple of the pixel size.

calc_stellar_size
Determines the output image extent for a stellar acquisition. Extent is based on SCA corners.

calc_lunar_size



LDCM-ADEF-001
Version 3
Determines the output image extent for a lunar acquisition. Extent is based on either all of the SCA
corners for all bands or only the SCA that contains the moon.

point_in_polygon
Simple point in a polygon check. Used with lunar process for determining if the moon lies within a
SCA.

oli_moonpos_lIs
Given a Level 1R line and sample location this module calculates the relative line of sight between
the moon and satellite sensor.

oli_moonpos
Given a Julian day, this routine calculates the moon’s position. Calls the JPL NOVAS libraries to
determine the moon’s position. Coordinates are given in terms of ECI true-of-date.

maxbox
This routine determines the frame in output space for the maxbox north-up product. Image framing is
based on maximum image extent derived from SCA corners.

path_oriented
This routine will provide a path-oriented projection that is framed to a nominal WRS scene. The user
specifies only the projection, pixel size, and the path and row of the scene.

det_grid_Is

Given the number of grid lines and samples that will be sampled in the input imagery, this routine
calculates where each grid cell point will fall in the input Level 1R image. These grid cell points will
fall at integer locations in the input imagery.

exx_mapedg
This routine calculates the minimum and maximum projection coordinates for given upper left and
lower right latitude, longitude coordinates.

pad_corners
This routine pads the input corners by a defined factor of the pixel size. The x/y min and max values
are input for the corner locations. These values are padded by PADVAL * the pixel size.

calc_center_and_rotation_angle

This routine will return the scene center and rotation angle for a nominal WRS scene. The WRS path and row
of the input scene and the projection parameters are needed as input. Note: The WRS_Lat and WRS_Long are
the Center_Lat_Long that need to be returned from this routine. The Heading angle is the WRS rotation angle,
i.e., the image orientation relative to geodetic north.

calc_path_oriented_frame

Given the center point and rotation angle, this function will calculate the image corner coordinates in
an SOM or UTM product. It also calculates the first-order polynomial coefficients which map output
line/sample coordinates to their corresponding output projection coordinates. This routine will
determine the frame in output space for the path-oriented product. The frame is calculated for each
band, but the frame must be the same for every band.



LDCM-ADEF-001
Version 3
angle_to_map
This routine will convert the WRS rotation angle (from geodetic north) to a frame orientation angle in map
coordinates. The orientation angle will be retained in the grid structure.

path_maxmin_box
This routine will provide a path-oriented product whose frame is large enough to contain all bands
(maxbox).

calc_path_oriented_maxbox_frame
This routine calculates the path-oriented frame for the maxbox approach.

make_grid

This routine establishes the input to output mappings. It invokes make_grid_point for each point to
compute the mapping, and then invokes make_grid_sensitivity for each point to compute the jitter
sensitivity coefficients.

make_grid_point
Calculates the input to output space mapping for a single grid point. Calls oli_forward_model to
perform input space location to output space location mappings.

make_grid_sensitivity

Calculates the roll-pitch-yaw to input space line/sample jitter sensitivity coefficients for one grid point.
Calls oli_forward_model_pert while varying the spacecraft attitude, the input space line number, and
input space sample number to determine the corresponding output space sensitivity. It then finds the
input space offsets that provide the same effect in output space as a given attitude perturbation,
yielding the input space correction needed to compensate for a unit jitter disturbance for each
spacecraft axis.

oli_init_lunar_projtran
Initializes the position of the moon with respect the lunar acquisition. Needed for oli_lunar_projtran.

oli_forward_model
For a given a Level 1R line, sample, band and SCA location, propagates the forward (geometric)
model to determine a latitude and longitude for the specified point.

oli_forward_model pert

A variant of oli_forward_model that accepts an additional input roll-pitch-yaw attitude perturbation
array. This perturbation is added to the spacecraft attitude interpolated from the OLI LOS model at
the time corresponding to the input space line/sample point being projected. This capability is used by
make_grid_sensitivity in determining the jitter sensitivity coefficients.

oli_findtime
This function finds the time into the scene given the Level 1R line, sample, and band. The input
sample number is O-relative and relative to the SCA.

oli_findlos
This function finds the line of sight vector in sensor coordinates, using the Legendre polynomial LOS
model stored in the LOS model.



LDCM-ADEF-001
Version 3
oli_findatt
This function computes the attitude, or roll, pitch, yaw, for a given time.

oli_findjit

This function is invoked by oli_forward_model when the input detector type parameter is set to
EXACT. This is currently only used by the OLI LORp data simulator. This unit uses the input time to
extract the high frequency attitude correction from the jitter table in the OLI LOS model, so that it can
be added to the low frequency spacecraft attitude result in oli_forward_model. This unit is not invoked
by grid generation processing, where the detector type is NOMINAL, but as part of the forward line-of-
sight model, it is described here for completeness.

I8_movesat
This function computes the satellite position and velocity at a delta time from the ephemeris reference
time using Lagrange interpolation.

I8 attitude
This function finds the line of sight vector from the spacecraft to a point on the ground by transforming
the line of sight vector in sensor coordinates to perturbed spacecraft coordinates.

geo_center_mass_corr
Adjusts the observation vector according to the spacecraft center of mass.

geo_corr_vel_aberr
Adjusts line of sight vector for velocity aberration.

geo_findtarpos
This function finds the position where the line of sight vector intersects the Earth's surface. Used only
for Earth based acquisitions.

geo_corr_light_travel time
Adjusts target location according to the light travel time. Used only for Earth based acquisitions.

geo_centh2det
This function converts between geocentric and geodetic coordinates. Used only for Earth based
acquisitions.

exx_cart2sph
Convert between cartesian and spherical coordinates. For grid generation, applies only towards
stellar and lunar acquisitions.

exx_projtran

This function converts coordinates from one map projection to another. The transformation from
geodetic coordinates to the output map projection depends on the type of projection selected. The
mathematics for the forward and inverse transformations for the Universal Transverse Mercator
(UTM), Polar Stereo Graphic, and the Space Oblique Mercator (SOM) map projections are handled
by U.S Geological Survey’s (USGS) General Cartographic Transformation Package (GCTP), which
may be obtained at http://edcftp.cr.usgs.gov/pub/software/gctpc/.

oli_lunar_projtran


ftp://edcftp.cr.usgs.gov/pub/software/gctpc/

LDCM-ADEF-001
Version 3
Calculates the output line and sample location given the right ascension and declination angles
associated with the sensor line-of-sight vector of a lunar acquisition. Serves as the equivalent
exx_projtran for a lunar based acquisition.

exx_proj_err
This function reports projection transformation package errors. The function receives a GCTP error
code and prints the correct error message.

gctp

Map projections are handled by U.S Geological Survey’'s (USGS) General Cartographic
Transformation Package (GCTP), which may be obtained at
http://edcftp.cr.usgs.gov/pub/software/gctpc/.

xxx_eval
Applies a polynomial at a given point.

calc_map_coefs

This routine calculates the bilinear mapping coefficients for each grid cell. Coefficients are calculated
for mapping from input location to output location (forward mapping) and for mapping from output
location to input location (inverse mapping). A separate mapping function is used for lines and
samples. This equates to four mapping functions. A set of four mapping functions is calculated for
each grid cell, for each SCA, for every band, and for every elevation plane that is stored in the grid.

exx_calc_forward_mappings

This function, given grid points in both input and output space, uses the Calculate Map Coefficients algorithm
described in the Procedure section to generate the mapping polynomial coefficients needed to convert from a
line/sample in input space (satellite) to one in output space (projection). It generates these coefficients for every
cell in the grid.

exx_calc_inverse_mappings

This function, given grid points in both input and output space, uses the Calculate Map Coefficients
algorithm described in the Procedure section to generate the mapping polynomial coefficients needed
to convert from a line/sample in output space (projection) to one in input space (satellite). It
generates these coefficients for every cell in the grid.

calc_rough_map_coefs
This routine will find the rough mapping coefficients for the grid.

oli_grid_cell_poly
This utility function calculates a "rough” mapping of output to input lines/samples. The coefficients
returned from this function are used as a rough estimate of an inverse model.

calc_det_offsets
This function computes the detector offset values and stores linear mapping coefficients associated
with detector offsets in the grid structure.

oli_all_ols2ils


ftp://edcftp.cr.usgs.gov/pub/software/gctpc/

LDCM-ADEF-001
Version 3
This utility routine maps an output space line/sample back into its corresponding input space
line/sample. This is done using the "rough" polynomial from the grid to determine an initial guess at
an input space line and sample. From this initial guess a grid cell row and column is calculated and
the inverse coefficients for that cell are retrieved from the grid. These coefficients are used to
determine an exact input space line and sample (in extended space).

oli_findgridcell

This utility function finds the correct grid cell that contains the output line/sample location. It finds the
correct grid cell containing the output pixel by first determining the set of grid cells to be checked. It
then calls a routine to perform a "point in polygon" test on each of these grid cells to determine if the
pixel does indeed fall within that grid cell.

7.2.2.7 Procedure

The LOS Projection algorithm uses the geometric LOS model created by the LOS Model Creation
algorithm to relate OLI image pixels to ground locations or, in the case of lunar/stellar images, to ECI
directions. The LOS model contains several components including: Earth orientation parameters, an
image model (validated image time codes), a sensor model, an ephemeris model, and an attitude
model. The Level 1R image line/sample location is used to compute a time of observation (from the
image model), a LOS vector (from the sensor model), the spacecraft position (from the ephemeris
model) at the time of observation, and the spacecraft attitude (from the attitude model) at the time of
observation. The LOS vector is projected to the Earth's surface, either the topographic surface at a
specified elevation (e.g., derived from an input Digital Elevation Model), or the WGS84 ellipsoid
surface, to compute the ground position associated with that Level 1R image location. This LOS
projection procedure relating an input image location to an output ground location is referred to as the
forward model. In image resampling, we typically need to find the Level 1R input space line/sample
location corresponding to a particular Level 1G output space location so that the corresponding image
intensity can be interpolated from the Level 1R data. This "inverse model" computation must be
performed for every pixel in the output Level 1G product. To make this computation efficient, we
create a table, or grid, of input/output mappings, parameterized by height, for use by the image
resampling algorithm. Both the forward model and grid generation procedures are described in this
algorithm description document.

7.2.2.7.1 The Geometric Grid

The geometric grid provides a mapping from input Level 1R line/sample space to output Level 1G
line/sample space. As such, it incorporates not only the sensor LOS to Earth intersection geometry
captured by the forward model, but also the output image framing information, such as scene corners,
map projection, pixel size, image orientation, and the bounds of the active image area for each band.
The gridding procedure generates a mapping grid that defines a transformation from the instrument
perspective (input space) to a user specified output projection on the ground (output space). This
output frame may be map-oriented (north-up) or path-oriented for Earth-view acquisitions. Celestial
(lunar/stellar) acquisitions use an output frame based on inertial right ascension and declination
coordinates. Once the frame is determined in output space, the input space is gridded. Then the grid
in input space is mapped to the output space using the forward model. Transformation coefficients to
transform a grid cell from input to output space are determined, as well as coefficients to transform a
grid cell from output to input space.

The concept behind creating this resampling grid is to define only a sparse set of points for the
relationship between an input line and sample location to output line and sample location (see Figure



LDCM-ADEF-001
Version 3

1). Four grid points define a grid cell. A grid cell is defined as a rectangle in input space but will be
distorted when mapped to the output space. The sampling of points between grid cell points is
chosen such that any two points defining a grid cell and a line in input space will map to a line in
output space. Therefore every grid cell defines a bilinear mapping between the input and output
space and vice versa. The method of only mapping and storing a small set of input points is much
more efficient than trying to map points individually by invoking the LOS model for each point. This is
especially the case since a rigorous implementation of the inverse model would have to be iterative.

Input  Input Input Input Input Input
Sample Sample Sample Sample Sample Sample

is-2As  is-As is is+tAs  is+2As  is+3As
Input Line il-Al

Input Line il / / / / / Elevation

Plane z+1

Input Line il+Al / / / /

i/ / ! Elevation

I . I e
Store output Plane 2

. h =(z-z,)*Ah

line/sample — : : ! !
(ol, os) for &« i 5 ; ;
input (il, is, h) § § § § Elevation
at this grid cell //////// Plane z-1

Grid Resolution (Al, As, Ah)

Figure 1. The 3D grid structure stores the output space line/sample coordinates
corresponding to an array of input space line/sample/height coordinates.

Forward
mapping

Input Zy
Space Output Space

Inverse
mapping

Figure 2: Forward and Inverse Mapping Using the Grid

The LOS projection grid contains projection information and three groups of mapping coefficients—
one for mapping each grid cell from output space to input space (inverse), a second for mapping each



LDCM-ADEF-001
Version 3

grid cell from input space to output space (forward), and third that gives an approximation or “rough”
mapping of output space to input space. The first two mappings are described by a set of bilinear
polynomials. The input space is represented by a line and sample location while the output space is
represented by a line and sample location along with a Z component, where Z represents elevation.
The output lines and samples can in turn be converted to X, Y projection space location by using the
output image’s upper left projection coordinate and pixel size information in the grid header. Figure 2
shows how one input grid cell is mapped to a number of output grid cells, each grid cell representing
a different elevation.

The number of grid cells is dependent on the line and sample size of each grid cell in the input image,
elevation maximum, elevation minimum, and elevation increment. The input space is made up of
evenly spaced samples and lines, values are associated with integer locations and can be indexed by
an array of values: input_line[row] and input_sample[column]. Row refers to the index number, or row
number, associated with the line spacing while column refers to the index number, or column number,
associated with the sample spacing. The output lines and samples typically do not fall on integer
values (see Figure 3). This creates a two dimensional array of indices for output line and sample
locations. Adding elevation indices produces a three dimensional array for output line and sample
locations. The output lines and samples are then indexed by output_line[z][row][column] and
output_sample[z][row][column] where Z refers to an elevation value. The row and column are the
indices associated with the gridding of the raw input space. Since there is a mapping polynomial for
each grid cell, the mapping polynomial coefficients are indexed by the same method as that used for
output lines and samples; i.e. there are z*row*column sets of mapping coefficients.

Input/Output grid spacing for
elevation Z,

Integer spaced input Non integer output grid
grid locations locations

Figure 3: Mapping integer locations to “non-integer” locations



LDCM-ADEF-001
Version 3

If a grid is being generated for a non-terrain corrected image (i.e., no correction for relief is being
applied) then the index for z is set such that zqev=0 = zero elevation. Note that zey=o does not
necessarily have to be the first index in the array since there could be values for negative elevations.
If the grid is being generated for a terrain corrected image, then the indexes z, and z,.; are used such
that the elevation belonging to the output location falls between the elevations associated with the
indexes n and n+1. When performing an inverse mapping for a terrain corrected image, two sets of
input lines and samples are calculated from the polynomials for n and n+1. The actual input line and
sample is interpolated between these lines and samples.

Example:

Output line/sample has r = row, ¢ = col and z=n, n+1. If the inverse mapping coefficients are a
and b for line and sample respectively then:

input_line, = bilinear(an,output_line,output_sample)
input_sample, = bilinear(by,output_line,output_sample)
input_linens1 = bilinear(an+1,0utput_line,output_sample)

input_samplen.; = bilinear(b,.1,0utput_line,output_sample)
bilinear is the bilinear mapping function (described below) for each grid cell.

If e is the elevation for the output line and sample location then the weights used to interpolate
between the two input line/sample locations are:

en+1_e e_en

n n+1

€16, €1 —En

en, en+1 and e are the elevations associated with z, , z,+1 and the output line and sample
respectively.

The final line/sample location is found from:

input_line  =w, *input_line,  + wnsp * input_lineps
input_sample = w, * input_sample, + wn.1 * input_samplen.;

The grid must contain a zero elevation plane. If the input minimum elevation is greater than zero it is
set to zero. If the input maximum elevation is less than zero it is set to zero.

Given the elevation maximum, minimum, and increment determine the number of z planes and the
index of the zero elevation plane. Adjust the minimum and maximum elevations to be consistent with
the elevation increment.

The number of z planes is determined from:

. ..( elevation maximum elevation minimum
number of z planes = (int) ceil —floor +1

elevation increment elevation increment
The plane for an elevation of zero is then found at:



LDCM-ADEF-001
Version 3

elevation minimum
Z 0,0 = —TloOr —
elevation increment

The new minimum and maximum elevation due to the values calculated above are:

elevation minimum =z, *(elevation increment )
elevation maximum = (number of z-1-z,,,_,) *elevation increment

elev=

7.2.2.7.2 LOS Projection/Grid Generation Procedure Overview

The LOS Projection/Grid Generation procedure is executed in five stages:

1. Data Input - First, the required inputs are loaded. This includes reading the processing
parameters from the input ODL parameter file, loading the LOS model from its HDF file,
reading static gridding parameters from the CPF, and loading the elevation data from the DEM.

2. Scene Framing - The parameters of the output image space are computed based on the scene
framing scheme specified in the input ODL file. This includes calculating bounds for the active
image area that excludes the leading and trailing SCA imagery, and using one of several
available methods for determining the Level 1G scene corners. The scene framing parameters
are stored in the grid structure for eventual inclusion in the geometric metadata for the Level
1G product.

3. Grid Definition - The grid parameters are established to ensure adequate density in the space
(sample), time (line), and elevation (z-plane) dimensions. The required data structures are
allocated and initialized.

4. Grid Construction - The forward model is invoked for each grid intersection to construct the
array of input space to output space mappings. A separate grid structure is created for each
SCA and each band. The grid mapping polynomial coefficients are computed from the input
space to output space mapping results for each grid cell. Once the basic grid mappings are
defined, the forward model is invoked with small attitude perturbations about each axis in order
to evaluate the sensitivity of the input space to output space mapping to small attitude
deviations. The resulting sensitivity coefficients are stored with each grid cell for subsequent
use in computing high frequency jitter corrections during image resampling. Figure 4 shows a
high level data flow for the creation and use of these new coefficients.

5. Finalize and Output Grid - Derived grid parameters such as the global rough mapping
coefficients, are added to the grid structure, and the entire structure is written to a disk file.
This also includes evaluating the small, but significant, parallax effects caused by the time
delay between when adjacent even and odd detectors sample the same along-track location.
These effects are modeled in the grid as along- and across-track sensitivity coefficients that
are scaled by the output point elevation and the even/odd detector offset, which can vary by
pixel for OLI (due to detector deselect) rather than by band.



LDCM-ADEF-001

Version 3
OLI Grid
OLI Model
@ InfOut Polynomials
| LOS Coefficients I — —
Compute | Terrain Sensitivity |
| Detector Offsets I—— . - —
- Jitter > Jitter Sensitivity
[ Attitude Data__| Sensitivity
[ Ephemeris Data_| Adjust
|Image Time Codes ,' _ Samp Jitter Ke_m al
[_JiterTable - 7| Compute > _Weights | | outputimage Pixel
Inputlmage Data [ i
P d Offset Line Jitter o[ Adust
Interpolation
Location

Figure 4: Jitter Correction Data Flow

Figure 5 shows a block diagram for the LOS Projection algorithm.

7.2.2.7.2.1Stage 1 - Data Input

The data input stage involves loading the information required to perform grid processing. This
includes reading the framing parameters for the output scene from the ODL file, reading grid
structural parameters from the CPF, loading the LOS model structure in preparation for invoking the
forward model, and reading the DEM to determine the elevation range for the image.



LDCM-ADEF-001
Version 3

/ ODL H Retrieve Parameters

v

LOS
3 Read LOS Model

v

Determine Number
of Grid Cells

v

/ CPF f—> Read CPF

v

DEM Read DEM
v

Frame Output Space
v

Grid Input Space

v

Calculate Mapping
Coefficients

v

Calculate Detector
Offsets

v

Write Grid Structure
Projection
Grid

Figure 5: Line-of-Sight Projection Block Diagram

7.2.2.7.2.2Stage 2 - Scene Framing

Framing the output image space involves determining the geographic extent of the output image to be
generated by the resampler. This geographic extent of the output image space is referred to as the
output space “frame,” and is specified in output image projection coordinates. There are four different
methods that are used to determine the output frame for Earth-viewing acquisitions. Scene framing
for lunar and stellar scenes uses either a maximum bounding rectangle (maxbox) or a minimum
bounding rectangle (minbox) approach using inertial LOS declination and right ascension
coordinates, and is discussed separately. These methods use the calculated coverage bounds of
each band/SCA in different ways, with some excluding the leading and trailing SCA imagery based on
a calculated active image area, and some including the leading/trailing imagery so as to preserve all
available input pixels (e.g., for calibration purposes). Thus, the calculation of the active image area for
each band is the first step in scene framing.

7.2.2.7.2.2.1 Calculating the Active Image Area

The along-track offsets between spectral bands and even/odd SCAs create an uneven coverage
pattern when projected into output image space. In order to provide a more regular output image
coverage boundary, we define a rectangular active image area that excludes the excess trailing
imagery from even SCAs and the excess leading imagery from odd SCAs. This active area is used
for the minbox framing methods which seek to limit the output product area to provide consistent,



LDCM-ADEF-001
Version 3
contiguous coverage, but are ignored for maxbox framing methods, where all available imagery is
desired.

The active image area is computed by constructing 8 critical SCA corner points, labeled C1 through
C8 in the figure below. Points C1 and C2 define the top edge of the active area, C3 and C4 the right
edge, C5 and C6 the bottom edge, and C7 and C8 the left edge. Note that points C1 and C8 are the
same (the upper left corner of SCAO01) as are points C4 and C5 (the lower right corner of SCA14).
The forward model projects these 8 line/sample locations to object space, computing the
latitude/longitude coordinates of the WGS84 ellipsoid intersection for each point.

C3
C1!C8 _g
C2).

UL UR

SCAQ SCAQS SCAOH SCAQOH SCA1( SCA17 SCA14
SCAO0] SCAOF SCAOY SCAO7 SCAOY SCA1l SCA13

LL LR
U ®_
! C6 C4)C5

c7

Figure 6: Active Image Area Construction

The SCA and corner point assignments are made automatically by examining the SCA across-track
and along-track Legendre coefficients to determine: 1) whether SCAOL1 is on the left (+Y) or right (-Y)
side of the scene; 2) whether even or odd SCAs lead; and 3) whether the sample number increases
in the =Y or +Y direction. If the across-track Legendre constant term (coef_y0) for SCAO1 is positive
then it is the left-most SCA and SCA14 is the right-most. If the along-track Legendre constant term
(coef_x0) for SCAO1 is greater than that for SCA02, then the odd SCAs lead. If the across-track
Legendre linear term (coef_y1) for SCAO1 is negative, then the sample number increases in the —Y
direction.

Having determined the orientation of the SCAs, we assign the top edge of the active area to the left-
most leading SCA upper left (UL) corner and the right-most leading SCA upper right (UR) corner, the
right edge to the right-most SCA UR and lower right (LR) corners, the bottom edge to the right-most



LDCM-ADEF-001
Version 3
trailing SCA LR corner and left-most trailing SCA lower left (LL) corner, and the left edge to the left-
most SCA LL and UL corners. As shown in the figure, for the OLI: C1 = SCAO01 (left-most odd SCA)
UL, C2 = SCA13 (right-most odd SCA) UR, C3 = SCA14 (right-most SCA) UR, C4 = SCA14 (right-
most SCA) LR, C5 = SCA14 (right-most even SCA) LR, C6 = SCA02 (left-most even SCA) LL, C7 =
SCAO01 (left-most SCA) LL, and C8 = SCAO01 (left-most SCA) UL.

The geodetic latitudes computed by the forward model are converted to geocentric longitudes using:
0 = arctan( (1-e?) tan(¢) )
where: 0 = geocentric latitude
¢ = geodetic latitude
e’ = WGS84 ellipsoid eccentricity squared

This creates a set of 8 geocentric latitude/longitude (6;, ;) pairs, one for each “critical” corner, noting
that geocentric longitude is equal to geodetic longitude.

Use the geocentric latitude/longitude to construct a geocentric unit vector for each corner:
cos(,)cos(4))
X, = | sin(4,)cos(6))
sin(6))
Note that these vectors are inherently normalized.

Construct vectors normal to the top, right, bottom, and left edge great circles by taking cross products
of the corner vectors:

_ X xX, _ Xyx X, _ Xsx X _ Xy xXg
TXx X, X x X T X% X S X x X
Construct corner vectors from the edge vectors:
X :XTxXL :XRXXT :XLXXB :XBXXR
Xy x X T Xex X XU x X H X x Xq

The top and bottom edges are next checked against all of the SCA corners to ensure that any
curvature in the SCA field angle pattern is accounted for. This is done to suppress residual SCA edge
‘raggedness”.

Adjust the top edge:
Construct a vector in the plane of the top edge great circle:

X = (XUR - XUL)X Xr
’ |(XUR - XUL)>< XT|

Initialize the minimum “out of plane” distance: amin =1
For each SCA:
For the two upper corners: UL (0,0) and UR (ns-1,0):
Use the forward model to project the corner.
Convert the geodetic latitude to geocentric latitude as above.
Construct a geocentric unit vector, X;, as above.
Project the unit vector onto the Xq and Xt vectors and compute the ratio:



LDCM-ADEF-001
Version 3

If ai < anin
Amin = 4;
Xmin = X
Next corner
Next SCA

If amin < 0 then the innermost corner lies inside the current active area and we need to adjust
the top edge:

_ (X 'XT)XT+(X
o X, s 21X

° Xg)xg
X)X

i min min

min

X!

_ Xé ><(XUR _XUL)
TXx (X = X

o)

And update the top corner vectors using the adjusted edge vectors:
X3 x X, Xax Xg

XUL = UR —

|X{><XL| |XR><X{

Adjust the bottom edge:
Construct a vector in the plane of the bottom edge great circle:

X :(XLL_XLR)XXB
’ |(XLL_XLR)XXB|

Initialize the minimum “out of plane” distance: amin =1
For each SCA:
For the two lower corners: LL (0,nl-1) and LR (ns-1,nl-1):
Use the forward model to project the corner.
Convert the geodetic latitude to geocentric latitude as above.
Construct a geocentric unit vector, X;, as above.
Project the unit vector onto the Xy and Xg vectors and compute the ratio:
a = X, o X,
"X e X

[ g
If a; < amin
Amin = 4,
Xmin = X

Next corner
Next SCA

If amin < O then the innermost corner lies inside the current active area and we need to adjust
the bottom edge:



LDCM-ADEF-001

Version 3
X' (Xmin'XB)XB+(xmin xg)xg
g_‘(xmin.XB)XB (Xmin.xg)xg‘
X! = XéX(XLL_XLR)
i ‘XéX(XLL_XLRX

And update the bottom corner vectors using the adjusted edge vectors:
X, xXg Xgx Xy

XLL:— LR:m

X x X4

Convert the four corner vectors to the corresponding geodetic latitude/longitude:
A = atan2( X.y, X.x)

0 = atan2( X.z, X.x*+X.y*)

¢ = atan(tan( 0)/ (1-€?))
The four latitude/longitude corners are the bounds of the active image area.

Once the active image area bounds are calculated, the output product frame is determined using one
of the following methods:

Method 1: PROJBOX
The user defines the upper-left and lower-right corner coordinates of the area of interest in
target map projection coordinates. These coordinates are then projected to the output
projection coordinate system using the Projection Transformation Package (see the Projection
Transformation sub-algorithm below). This usually results in a non-rectangular area so a
minimum-bounding rectangle is found (in terms of minimum and maximum X and Y projection
coordinates) in the resulting output space. This minimum-bounding rectangle defines the
output space frame. The output image pixel size is then applied to the projection space to
determine the number of lines and samples in the output space. This creates an output image
that is map projection north-up.

Method 2: MINBOX
The image active areas for each band, calculated previously, are converted to the specified
output map projection coordinate system and used in a minimum bounding rectangle
computation to create an output image frame that includes the active area for each band. The
computed (latitude/longitude) active area corners are maintained in the grid for subsequent
use by the image resampler, so that the output product image will not include leading/trailing
SCA imagery.

Method 3: MAXBOX
The four corners of each SCA in each band are projected to the Earth. The maximum and
minimum latitude and longitude found across all SCAs and all bands are used to establish the
output scene frame in the manner described above for the PROJBOX method. This creates an
output frame that contains all input pixels from all bands. The previously calculated image
active areas are ignored in this process, and the band active area corners are all set equal to



LDCM-ADEF-001
Version 3
the output product corners. Leading and trailing SCA imagery is thereby not excluded from
MAXBOX framed products.

Method 4: PATH
The user specifies a path oriented Landsat product in either the SOM or UTM projection. In
this case, the framing coordinates are not user-specified. The standard path-oriented frame is
a preset number of lines and samples based on the Landsat WRS scene size and the
maximum rotation needed to create a path-oriented product. Additional options exist to apply
either MINBOX or MAXBOX logic in determining the path oriented product frame.

Method 5: LUNAR
Lunar image framing applies either the same framing methodology as MAXBOX, defining the
maximum and minimum corners in right ascension and declination angles with respect to the
ECI coordinate system determined by the corners of all the SCAs for all bands, or with a
similar framing methodology as MINBOX, determining the corners based solely on the SCA
that contains the moon. The right ascension and declination angles are adjusted according the
change in orbit of the moon during image acquisition.

Method 6: STELLAR
Stellar image framing applies the same framing methodology as MAXBOX only the output
space frame defining the maximum and minimum corners are in right ascension and
declination angles with respect to the ECI coordinate system.

The scene framing logic uses the following sub-algorithms/routines:

a)Validate UTM Zone

The nominal UTM zone to use is computed from the scene center longitude but the projection may be
forced to an adjacent zone using input parameters. In particular, each WRS path/row may be
preassigned to a UTM zone so that the same zone is always used for scenes near UTM zone
boundaries. This should not introduce a zone offset greater than 1. The validation is performed by
computing the UTM zone in which the scene center falls and then determining whether the input UTM
zone (if any) is within one zone of the nominal zone.

Shift the scene center longitude to put it in the range 0-360 degrees:
SC_long = mod( SC_long + 540, 360 )
where: SC_long is the scene center longitude in degrees

Compute the nominal UTM zone (note that UTM zones are six degrees wide):
SC_zone = (int)floor( SC_long/6 ) + 1

See if the input zone is within one zone of the nominal zone:
if (abs(input_zone - SC_zone ) < 2 or (60 - abs( input_zone - SC_zone ))<2)
then input_zone is valid.

b) North Up Framing

Determine the scene corners. Scene corners depend on whether the corners were user input
(PROJBOX) or calculated by projecting the Level 1R image corners (MAXBOX) but the framing logic
is essentially the same in each case. Once given as input or computed, the latitude/longitude scene
corners are converted to the defined map projection, the extreme X and Y coordinates are found, and



LDCM-ADEF-001

Version 3

these extreme points are rounded to a whole multiple of the pixel size. The north-up framing methods
are each described in the following sub-algorithms.

b).1. Map Edge/PROJBOX Framing
Calculates the minimum and maximum projection coordinates for given upper left and lower right
latitude, longitude coordinates.

o Calculate min/max coordinates along east edge of output area by computing
latitude/longitude to map x/y projections for a series of points from (minimum latitude,
maximum longitude) to (maximum latitude, maximum longitude).

o Calculate min/max coordinates along west edge of output area by computing
latitude/longitude to map x/y projections for a series of points from (minimum latitude,
minimum longitude) to (maximum latitude, minimum longitude).

o Calculate min/max coordinates along south edge of output area by computing
latitude/longitude to map x/y projections for a series of points from (minimum latitude,
minimum longitude) to (minimum latitude, maximum longitude).

o Calculate min/max coordinates along north edge of output area by computing
latitude/longitude to map x/y projections for a series of points from (maximum latitude,
minimum longitude) to (maximum latitude, maximum longitude).

Note that since lines of constant latitude and/or longitude may be curved in map projection space, the
extreme map x/y points may not correspond to the four PROJBOX corners.

b).2. Minbox/Maxbox Framing Determine the frame in output space for the minbox or maxbox north-
up product. The actual frame is determined based on the optimal band's pixel size, but the frame is
the same for every band.

b).2.1 Minbox Framing Calculate the MINBOX frame bounds using the active area corner points for each

band.

1. Call projtran (see below) to get the output map projected x/y, for each active area corner point for each
image band.

2. Find the minimum and maximum output proj x/y from the full set of active area corner points.
3. Pad the min and max output projection x/y to make them a multiple of pixsize.

4. Fill in the corners for the grid in the order of UL, LL, UR, LR and Y/X coords.
UL = min x, max y
UR = max x, max y
LL =minx, miny
LR =max x, miny

5. Find the number of lines and samples for the grid, for each specified band number.
lines = (max y - min y)/pixsize + 1
samples = (max X - min x)/pixsize + 1

b).2.2 Maxbox Framing Calculate the MAXBOX product frame bounds using the projected corners of each
band/SCA.
1. Find the four image corners in input space for each SCA and band.

UL - (1, first_pixel)

UR - (1, last_pixel)



LDCM-ADEF-001

Version 3
LL - (NLines, first_pixel)
LR - (NLines, last_pixel)

2. Call the forward model (see below) to get the output lat/long, for each corner point.
3. Call projtran (see below) to get the output map projected x/y, for each corner point.
4. Find the minimum and maximum output proj x/y from the full set of corner points.
5. Pad the min and max output projection x/y to make them a multiple of pixsize.

6. Fill in the corners for the grid in the order of UL, LL, UR, LR and Y/X coords.
UL =min x, max y
UR = max x, max y
LL =minx, miny
LR =max x, miny

7. Find the number of lines and samples for the grid, for each specified band number.
lines = (max y - min y)/pixsize + 1
samples = (max x - min x)/pixsize + 1

8. Call projtran to convert the map projection Y/X coordinates of the output product corners to
latitude/longitude.

9. Replace the active area corner coordinates for each band with the converted output product corner
coordinates.

b).2.3. Pad Corners Pad the input corners by a defined factor of the pixel size. The x/y min and max
values are input for the corner locations. These values are padded by PADVAL * the pixel size. The
newly padded x/y min and max values are returned, replacing the original values.

ixmin = int (Xmin/(PADVAL*pixsize))

Xmin = ixmin*PADVAL*pixsize

ixmax = int (Xmax/(PADVAL*pixsize))+1

Xmax = ixmax*PADVAL*pixsize

iymin = int (Ymin/(PADVAL™*pixsize))

Ymin = iymin*PADVAL*pixsize

iymax = int (Ymax/(PADVAL*pixsize))+1

Ymax = iymax*PADVAL*pixsize

c) Path Oriented Framing
Provide a path-oriented projection that is framed to a nominal WRS scene. The projection, pixel size,
and the path and row of the scene must be defined.

c).1. Calculate Center and Rotation Angle

Calculate the scene center and rotation angle for a nominal WRS scene. The WRS path and row of the input
scene and the projection parameters are needed as input. The nominal WRS scene center lat/long and rotation
angle for the given projection are returned. The algorithm has the following steps:

Convert input angles to radians:



LDCM-ADEF-001
Version 3
Inclination_Angle_R =Pi/ 180 * Inclination_Angle
Long Pathl Row60 R =Pi/ 180 * Long_Pathl Row60

Compute the Earth's angular rotation rate:
earth_spin_rate =2 * Pi/ (24 * 3600)

Note: We use the solar rotation rate rather than the sidereal rate in order to account for the orbital precession
which is designed to make the orbit sun synchronous. Thus, the apparent Earth angular velocity is the inertial
(sidereal) angular velocity plus the precession rate which, by design, is equal to the solar angular rate.

Compute the spacecraft's angular rotation rate:
SC_Ang_Rate =2 * Pi * WRS_Cycle_Orbits / (WRS_Cycle_Days*24*3600)

Compute the central travel angle from the descending node:
Central_Angle = (Row - Descending_Node_Row)/Scenes_Per_Orbit*2*Pi

Compute the WRS geocentric latitude:
WRS_GClLat = asin( -sin(Central_Angle) * sin(Inclination_Angle R))

Compute the longitude of Row 60 for this Path:
Long_Origin = Long_Pathl Row60_R - (Path-1) * 2*Pi/WRS_Cycle_Orbits

Compute the WRS longitude:

Delta_Long = atan2( tan(WRS_GCLat)/tan(Inclination_Angle_R),
cos(Central_Angle)/cos(WRS_GClLat) )

WRS_Long = Long_Origin - Delta_Long - Central_Angle *
Earth_Spin_Rate / SC_Ang_Rate

Make sure the longitude is in the range +/- Pi:
While (WRS_Long > Pi)

WRS_Long = WRS_Long - 2*Pi

While (WRS_Long < -Pi)

WRS_Long = WRS_Long + 2*Pi

Compute the scene heading:
Heading_Angle = atan2( cos(Inclination_Angle_R)/cos(WRS_GCLat),
-cos(Delta_Long)*sin(Inclination_Angle_R) )

Convert the WRS geocentric latitude to geodetic latitude:
WRS_Lat = atan( tan(WRS_GCLat) * (Semi_Major_Axis/Semi_Minor_Axis) *
(Semi_Major_Axis/Semi_Minor_Axis) )

Convert angles to degrees:
WRS_Lat=WRS_Lat * 180/ Pi
WRS_Long = WRS_Long * 180/ Pi
Heading_Angle = Heading_Angle * 180 / Pi

Round WRS lat/long off to the nearest whole arc minute:
WRS_Lat = round( WRS_Lat*60 ) / 60



LDCM-ADEF-001
Version 3
WRS_Long = round( WRS_Long*60 ) / 60

c).2. Calculate Path Oriented Frame

Calculate the center point and rotation angle, and the image corner coordinates in an SOM or UTM
projection. Also calculate the first-order polynomial coefficients which map output line/sample
coordinates to their corresponding output projection coordinates. Determine the frame in output space
for the path-oriented product. Calculate the frame for each band. The frame must be the same for all
bands.

c).2.1. Angle to Map
Convert the WRS rotation angle (from geodetic north) to a frame orientation angle in map coordinates. The
following is an algorithm to compute this:

Convert the WRS scene center latitude/longitude to map projection x/y (X1, Y1) using the projtran routine.

Add 1 microradian (0.2 seconds) to the WRS scene center latitude and convert this point to map projection x/y
(X2, Y2).

Compute the azimuth of this line in grid space as the arctangent of (X2-X1)/(Y2-Y1). This is the grid azimuth
of geodetic north at the WRS scene center.

Add this angle to the WRS rotation angle to give the grid heading. A standard framed scene puts the satellite
direction of flight at the bottom of the scene, so the scene orientation angle is the grid heading + or - 180
degrees. If the grid heading is <0 then subtract 180 degrees. If the grid heading is >0 then add 180 degrees.
This is the scene orientation angle to use with the WRS scene center.

c).2.2. Path-oriented Minbox/Maxbox Frame
Calculate the path oriented frame that is large enough to contain all bands.

c).2.2.1. Calculate Path-oriented Minbox Frame
Calculate path-oriented frame for the minbox approach.
1. Compute the map projection coordinates of the four image active area corners for each band
as described in step 1 of Minbox Framing.
2. Offset and rotate the scene corners to the path oriented frame using the WRS scene center
map projection coordinates (X1, Y1) and orientation angle:
a. X' = (X-X1) cos(angle) - (Y - Y1) sin(angle) + X1
b. Y'=(X-X1) sin(angle) + (Y - Y1) cos(angle) + Y1
3. Compute the minbox frame as described in steps 2-4 of Minbox Framing.
4. Convert the rotated minbox corners back to the unrotated map projection coordinate system:
a. X= (X'-X1) cos(angle) + (Y' - Y1) sin(angle) + X1
b. Y =-(X-X1) sin(angle) + (Y' - Y1) cos(angle) + Y1

c).2.2.2. Calculate Path-oriented Maxbox Frame
Calculate path-oriented frame for the maxbox approach.
1. Compute the map projection coordinates of the four image corners for the optimal band as
described in steps 1-3 of Maxbox Framing.
2. Offset and rotate the scene corners to the path oriented frame using the WRS scene center
map projection coordinates (X1, Y1) and orientation angle:



LDCM-ADEF-001
Version 3
a. X' =(X-X1) cos(angle) - (Y - Y1) sin(angle) + X1
b. Y'=(X-X1)sin(angle) + (Y - Y1) cos(angle) + Y1
3. Compute the maxbox frame as described in steps 4-6 of Maxbox Framing.
4. Convert the rotated maxbox corners back to the unrotated map projection coordinate system:
a. X= (X"-X1) cos(angle) + (Y' - Y1) sin(angle) + X1
b. Y =-(X"-X1)sin(angle) + (Y' - Y1) cos(angle) + Y1
5. Call projtran to convert the map projection Y/X coordinates of the output product corners to
latitude/longitude.
6. Replace the active area corner coordinates for each band with the converted output product corner
coordinates.

d) Celestial Acquisitions

Celestial acquisitions use the same framing logic as Earth acquisitions (namely maxbox) but the
output space coordinate systems are sufficiently different to merit separate discussion. For both lunar
and stellar acquisitions the output space is defined in terms of directions in inertial space, defined by
the ECI J2000 right ascension and declination of the OLI look vectors. In the case of stellar
acquisitions, the output space "projection” uses the ECI J2000 right ascension and declination
directly. For lunar acquisitions the output coordinate system is modified to use the LOS right
ascension and declination offset from the lunar right ascension and declination at the time of
observation. This creates a slowly rotating coordinate system that tracks the moon and is the reason
for having a planetary ephemeris file as an input to this algorithm. These differences emerge in the
forward model computations for celestial acquisitions where the LOS intersection logic used for Earth
acquisitions is replaced by operations on the inertial lines-of-sight (after conversion to inertial right
ascension and declination angles), with the resulting map projection x/y coordinates used in the
Earth-view algorithms replaced by right ascension and declination (or delta-right ascension and delta-
declination). Either the maxbox or minbox framing logic applied to the x/y map projection coordinates
in Earth-view acquisitions is then applied to these angular celestial coordinates.

e) Lunar Acquisitions
Lunar acquisitions use either a MAXBOX or MINBOX framing type. For the case of MAXBOX the
framing logic is the same as that used for Earth viewing acquisitions; determine bounding viewing
angles based on all SCAs of all bands. For the case of MINBOX the minimum box, or viewing
angles, are based on the SCA within which the moon resides. The bounding viewing angles for this
SCA for all bands define the frame for the output image. The moon is found to reside within an SCA
by using the moon’s coordinates, defined by the center of acquisition time of the scene, and checking
to see if these coordinates fall within a SCA. A simple point in a polygon routine is used for the
check:
If coordinate to check is defined as X, and Yn,
el) Define rectangle using SCA corners, X; and Y;
e2) Find maximum Y coordinate of rectangle, Y max.
e3) Define a new coordinate as:
Xn = Xm
Y, = Delta + Ymax
Where Delta is large enough to put point (X,, Yn) outside of polygon
e4) Define a line from (Xm,Ym) to (Xn,Yn).
e5) Determine number of times the line defined in e4) intersects sides of the rectangle from
el). If the number of intersections is an odd number then the point is within the rectangle.

Stage 3 - Grid Definition



LDCM-ADEF-001
Version 3
The grid definition stage determines the required size of the grid, allocates the grid structure, and
computes the input space (Level 1R) line/sample locations for each grid cell.

a) Determine Number of Grid Input/Output Lines/Samples
Determine the number of input points to be stored in the grid according to the grid sampling rate or
grid cell size chosen.

Loop through each band stored in the grid
Loop through each SCA stored in the grid.
Calculate the number of lines and samples stored in the grid according to the size of each grid
cell and the size of the input image to be processed. Store the number of grid lines and
samples calculated in the grid.

Calculate number of times grid cell size divides into Level 1R imagery

number of image lines
orid cell size line direction
number of detectorsper SCA 1
grid cell sizesampledirection

+1

number of grid lines =

number grid samples =

where:
number of image lines = number of lines in Level 1R (LOS model)
number of detectors per SCA = number of samples per SCA (LOS model)
grid cell size line direction = number of lines in one grid cell
grid cell size sample direction = number of samples in one grid cell

If the grid cell size in the line direction does not divide evenly into the number of lines in the
Level 1R then increment the number of grid lines by one.

If the grid cell size in the sample direction does not divide evenly into the number of samples in
the Level 1R then increment the number of grid samples by one.

b) Determine Grid Lines/Samples
Determine where each grid cell point will fall in the input Level 1R image. These grid cell points will
fall at integer locations in the input imagery.
Loop through each band that is stored in the grid
Loop through each SCA stored in the grid
Initialize first grid cell line location to zero relative.
input line location grid cellp = 0
Loop until the grid cell line location is greater than or equal to the number of Level 1R

lines, incrementing each new grid cell line location by the appropriate grid cell size in
the line direction for the current band and SCA.



LDCM-ADEF-001
Version 3

input line location grid cell, = input line location grid cell,.
+ grid cell size line direction

Set last grid cell line location to the last line in Level 1R image.

input line location grid cellisst = number of lines in Level 1R imagery
Initialize first grid cell sample location to zero relative.

input sample location grid cellp = 0

Loop until the grid cell sample location is greater than or equal to the number of Level 1R
samples, incrementing each new grid cell sample location by the appropriate grid cell size in the
sample direction for the current band and SCA.

input sample location grid cell, = input sample location grid cell,.;
+ grid cell size sample direction

Set last grid cell sample location to the last sample in Level 1R image.
input sample location grid celljzst = number of samples in Level 1R imagery

Stage 4 - Grid Construction

Once the grid structures are created (one per SCA per band) the forward model is evaluated at every
grid intersection, that is, for every Level 1R line/sample location at every elevation plane. The forward
model computes the WGS84 latitude/longitude coordinates associated with each input
line/sample/height point. These latitude/longitude positions are then converted to output space
line/sample by projecting them to map x/y, computing the offsets (and rotation if path-oriented) from
the upper-left scene corner, and scaling the offsets from meters to pixels using the pixel size.

a) Make Grid Given the number of grid lines and samples that will be sampled in the input imagery,
loop on each band of each SCA, loop on nhumber of z-planes, loop on number of input grid lines and
samples calculating the corresponding output line and sample location. For each input line, sample
location, and elevation, the instrument forward model function is called. This forward model function is
outlined in the steps below. Additional detail on the sub-algorithms which comprise the forward model
is provided in the subsection titled "Forward Model" later in this document.

The forward model uses the LOS model structure and the CPF to map an input line and sample
location to an output geographic location. These are the steps that are performed whenever
calculating an output geodetic latitude and longitude from an input line and sample by invoking the
instrument “forward model.” The GCTP function can then be used to transform the geographic
latitude and longitude to a map projection X and Y coordinate. If the output image has a “North up”
orientation, then the upper left projection coordinate of the output imagery and the output pixel size
can be used to transform any projection coordinate to an output line and sample location. If the map
projection space is in a rotated projection space, such as having a satellite path orientation, then a
transformation handling rotation is established between projection space and output pixel location.
This transformation is then used in converting projection coordinates to output pixel line and sample
locations.



LDCM-ADEF-001
Version 3
The process listed below is performed on all bands, all elevation planes, and all SCAs present in the
grid. The detector type used in the process is nominal (see the LOS Model Creation ADD for a
discussion of detector types). The list explains the actions taken if a detector type other than nominal
is chosen, so that it can be referenced later.

Loop on number of input grid lines.
Loop on number of input grid samples.
Read the input space (Level 1R) line/sample coordinate for this grid point.
Loop on the number of elevation planes.

Compute the height of the current elevation plane:
height = (z - z,,,,,) *€levation_increment

where:
z is the index of the current z-plane and
Zelev=0 IS the index of the zero elevation z-plane.

Invoke the forward model to compute the corresponding ground position latitude/longitude
for this point. The general steps of the forward model are described here and are presented
in more detail below.

Find Time

Find the nominal time of input sample relative to the start of the imagery. This procedure is
described in the LOS Model Creation ADD and is repeated below in the Find Time sub-
algorithm description.

Find LOS
Find the LOS vector for the input line/sample location using the Legendre polynomial
coefficients as described below in the Find LOS sub-algorithm.

Find Attitude

Calculate the spacecraft attitude corresponding to the LOS, i.e. for the line/sample location,
at the time computed above, using the Find Attitude sub-algorithm described below. Note
that for Earth acquisitions the roll-pitch-yaw attitude sequence in the LOS model is relative
to the orbital coordinate system whereas for celestial (lunar/stellar) acquisitions the LOS
model roll-pitch-yaw sequence is with respect to the ECI J2000 coordinate system. The
operations applied by the Find Attitude sub-algorithm are the same in either case.

Find Ephemeris

Calculate satellite position for line/sample using Lagrange interpolation. Reference the
move_sat sub-algorithm described in the LOS Model Creation ADD and repeated below.
Note that for Earth acquisitions the move_sat sub-algorithm is provided with the corrected
ECEF ephemeris data from the LOS model whereas for celestial (lunar/stellar) acquisitions
it will be passed the corrected ECI ephemeris.



LDCM-ADEF-001
Version 3

Rotate LOS to ECEF (Earth-view) or ECI (Celestial)

Use the OLI alignment matrix in the LOS model to convert the LOS vector from sensor to
ACS/body coordinates. Then apply the interpolated roll, pitch, and yaw to the LOS to
convert ACS/body to orbital (Earth-view) or ECI (celestial). If Earth-view, use the ephemeris
to construct the orbital to ECEF rotation matrix and use it to transform LOS to ECEF. The
procedure for Earth-view scenes is described in the Attitude sub-algorithm below. For
celestial acquisitions, the procedure is complete once the LOS has been rotated to ECI
using the roll-pitch-yaw perturbation matrix.

Spacecraft Center of Mass to OLI Offset Correction

Adjust the spacecraft position for the offset between the spacecraft center of mass and the
OLI instrument. This offset, in spacecraft body coordinates, is stored in the LOS model
structure. First, convert the offset from spacecraft body frame to ECEF using the attitude
perturbation matrix (body to orbital) and the orbital to ECEF matrix:

[orbital CM to OLI] = [perturbation [body CM to OLI]
[ECEF CM to OLI] = [ORB2ECEF]orbital CM to OLI]

Add the offset to the ECEF spacecraft position vector. This correction is not used for
celestial (lunar/stellar) acquisitions.

Correct LOS for Velocity Aberration

The relativistic velocity aberration correction adjusts the computed LOS (ECEF for Earth-
view and ECI for celestial) for the apparent deflection caused by the relative velocity of the
platform (spacecraft) and target. The preparatory computations are somewhat different for
Earth-view and celestial acquisitions due to the differences in target velocity.

Earth-view Case

The LOS intersection sub-algorithm described below (see Find Target Position) is
invoked with an elevation of zero to find the approximate ground target position. The
ground point velocity is then computed as:

Vg=m % Xq
where:

Vg = ground point velocity

Xy = ground point ECEF position

o = Earth rotation vector=[0 0 Q]

Qe = Earth rotation rate in radians/second (from CPF)
The relative velocity is then:

V = Vs - Vg

where Vs is the spacecraft ECEF velocity from the ephemeris data.



LDCM-ADEF-001
Version 3
Correcting the Earth-View LOS
The LOS vector is adjusted based on the ratio of the relative velocity vector to the
speed of light (from the CPF):

A

I'= \S where: | = uncorrected LOS and I' = corrected LOS

|-
C

Note that in this case the LOS velocity aberration correction is negative since we are
correcting the apparent LOS to the true (aberration corrected) LOS. The correction is
positive if we are computing the apparent LOS from the true (geometrical) LOS (see

lunar case below).

Celestial (Lunar/Stellar) Case

Both lunar and stellar acquisitions use the spacecraft inertial velocity from the
ephemeris data as the relative velocity. This is justified by the use of a lunar ephemeris
(using the Naval Observatory's NOVAS-C package) that returns apparent places. The
apparent location of the moon is already corrected for light travel time (see below) and
velocity/planetary aberration due to the motion of the moon around the Earth. Thus, the
residual aberration is due only to the motion of the spacecraft relative to the Earth.
Thus, for both lunar and stellar acquisitions:

V =V
where Vs is the spacecraft ECI velocity from the ephemeris data.

Correcting the Celestial LOS

For stellar acquisitions, the LOS is corrected for aberration in the same manner as for
Earth-view scenes. For lunar acquisitions, rather than correct the LOS vector, we adjust
the apparent location of the moon. The lunar vector is thus adjusted based on the ratio
of the relative velocity vector to the speed of light (from the CPF) as:

\Y%
I+ —

I'= \C/ where: | = uncorrected LOS and I' = corrected LOS

l+—
C

The correction is positive in this case since we are computing an apparent location
rather than correcting one.

LOS Intersection

For Earth-view acquisitions, intersect the LOS in ECEF with the Earth model as described
in the Find Target Position sub-algorithm below. This yields the geodetic latitude, longitude,
and height of the ground point.

For celestial acquisitions, convert the ECI LOS to right ascension (RA) and declination (J)
angles:



LDCM-ADEF-001
Version 3

RA=tan™ (X)
X

S = tan " (c—t)
VX2 +y?

where the ECI los vectoris[x y z]".

Correct Ground Position for Light Travel Time

Since the light departing the ground point takes a finite time to arrive at the OLI sensor,
there is a slight discrepancy in the corresponding time at the ground point and at the
spacecraft. Since the LOS intersection logic assumed that these times were the same, a
small correction can be made to correct for this light travel time delay.

Given the ECEF positions of the ground point and the spacecraft, compute the light travel
time correction as follows:

Compute the distance from the ground point to the spacecratft:
d =[x, - X,|
where:

Xs is the spacecraft ECEF position and
Xy is the ground point ECEF position.

Compute the light travel time using the speed of light (from CPF):
d
Itt = —
C

Compute the Earth rotation during light travel:
0=1Itt* Q. where Q¢ is the Earth angular velocity from the CPF.

Apply the light travel time Earth rotation:
cosd -singd 0
X, =|sind cos® O0X,
0 0 1
where:

Xg' is the corrected ECEF position
Xgq is the uncorrected ECEF position

Convert the corrected ECEF position to geodetic latitude, longitude and height.

Note that the light travel time correction for lunar observations due to the difference
between the Earth-moon distance and the spacecraft-moon distance is neglected. This is
justified by the fact that that the lunar angular rate is less than 3 microradians per second
and the maximum LTT difference is about 25 milliseconds making the magnitude of this
effect less than 0.1 microradians.

Convert Position to Output Space Line/Sample



LDCM-ADEF-001
Version 3
The angular geodetic (latitude/longitude) or celestial (RA/declination) coordinates must be
converted to the corresponding output space line/sample coordinate to complete the input
space to output space mapping.

For Earth-view acquisitions this is accomplished as follows:
Calculate the map projection X/Y for the geodetic latitude and longitude.
Convert map X/Y coordinate to output line/sample location:

If the output map projection is of a path-oriented projection then the X/Y coordinate is
transformed to output space with a bilinear transformation.

line=a,+a *X+a,*Y +a,*X*Y
sample=b, +b,* X +b, *Y +b, * X *Y
where:
a; = polynomial coefficients that map X/Y to an output line location

b; = polynomial coefficients that map X/Y to an output sample location
X,Y = map projection coordinates

The polynomial transformation is set up to handle the rotation involved in rotating a
“Map North” projection to Satellite of “Path” projection (i.e. one that has the output line
coordinate system more closely aligned with the along flight path of the satellite).

If the output map projection is not path-oriented, but “North up,” the relationship
between X/Y and output line/sample does not involve any rotation and the following
equation is used:

line = Upp.er IefF Y_-Y
pixel size Y
sample = XX —upper left X
pixel size X
where:

upper left Y = upper left Y projection coordinate of output image
upper left X = upper left X projection coordinate of output image
pixel size Y = output pixel size in Y coordinates
pixel size X = output pixel size in X coordinates

Note that these line and sample pixel coordinates are (0,0) relative (i.e., the center of
the upper left pixel is at line,sample 0,0).

For lunar acquisitions, the right ascension and declination angles derived from the inertial
LOS are offset from the nominal lunar inertial position to establish an output frame that
"tracks" the apparent location of the moon. This is done as follows:

a) Compute the apparent ECI J2000 position of the moon.



LDCM-ADEF-001
Version 3
1. Use the input JPL lunar ephemeris data in the NOVAS-C package to compute
the ECI true-of-date (ECITOD) apparent location of the moon at the time
corresponding to the current LOS (Ixx_moonpos). This apparent location is
provided as an ECITOD vector (i.e., including both direction and distance).
2. Apply the nutation and precession corrections (see Ancillary Data Preprocessing
ADD for additional information) to convert the ECITOD vector to ECI J2000.
3. Subtract the current spacecraft ECI J2000 position vector from the lunar ECI
J2000 vector to compute the spacecraft-lunar vector.
4. Compute the apparent (parallax corrected) right ascension, declination, and
spacecraft-lunar distance from the spacecraft-lunar vector (by invoking
exx_cart2sph.

b) Compute the differences between the LOS right ascension and declination and the
apparent lunar right ascension and declination.

c) Normalize the nominal angular pixel size by the ratio of the current spacecraft-moon
distance (computed above) and the nominal spacecraft-moon distance. The nominal
distance is computed at the acquisition center time.

pSizecurrent = pSizenominal * CIiStanCenominal / diStancecurrent

d) Divide the angular distances computed in b) above by the normalized pixel size
computed in ¢) above. This yields the moon-relative line/sample coordinate. This is the
coordinate space in which lunar images are framed, so the offset between these
coordinates and the lunar scene upper left corner coordinates yields the output space
line/sample for the current grid point.

For stellar acquisitions, the right ascension and declination angles derived from the inertial
LOS are used directly. The offsets relative to the scene upper left corner (in right
ascension/declination space) are computed and divided by the angular pixel size to compute
output space line/sample coordinates.

One additional note regarding the celestial acquisition scene framing is in order. Since right
ascension, like longitude, increases eastward, and declination, like latitude, increases northward,
and given that celestial images are looking "up"” rather than "down", the right ascension-x,
declination-y coordinate system is left-handed. This can lead to the moon being apparently
inverted left-to-right in the output image. This is not important for the applications (e.g., band
registration characterization) in which the lunar images are to be used. If "anatomically correct"
lunar images are required, some changes to the framing logic may be necessary.

The line and sample location calculated is stored in the grid structure. This line/sample location is
then the output location for the corresponding input line/sample and the current elevation (current grid
line/sample input locations).

b) Calculate Jitter Sensitivity Coefficients The forward model is invoked multiple times at each
grid intersection to compute the effect that small attitude perturbations about each spacecraft axis
have on the input space to output space line/sample mapping. This is done at each grid point as
follows:



LDCM-ADEF-001
Version 3

Save the current grid point input line/sample as in_line/in_samp and the current grid point output
line/sample as line0/sampO.
For each spacecraft axis (roll-pitch-yaw) :

1.
2.

3.

Perturb the attitude about the selected axis by 1 microradian.

Use the forward model to compute the output line/sample corresponding to the current
input line/sample using the perturbed attitude and store the result in line[0]/samp]0].
Perturb the input line number by 1 line (delta_line = 1) and recompute the corresponding
output line/sample, storing the result in line[1]/samp[1].

Restore the input line number to in_line and perturb the input sample number by 1 sample
(delta_samp = 1) and recompute the corresponding output line/sample, storing the result in
line[2]/samp[2].

Calculate the output space to input space line/sample sensitivities as:

a. delta_oline_per_iline = (line[1]-line[0]) / delta_line

b. delta_oline_per_isamp = (line[2]-line[0]) / delta_samp

c. delta_osamp_per_iline = (samp[1]-samp([0]) / delta_line

d. delta_osamp_per_isamp = (samp[2]—-samp[0]) / delta_samp

Invert the resulting 2-by-2 sensitivity matrix to find the input line/samp per output line/samp
sensitivities:

a. determinant = delta_oline_per_iline * delta_osamp_per_isamp — delta_oline_per_isamp
* delta_osamp_per _iline

delta_iline_per_oline = delta_osamp_per_isamp / determinant

delta_iline_per_osamp = -delta_oline_per_isamp / determinant
delta_isamp_per_oline = -delta_osamp_per_iline / determinant

e. delta_isamp_per_osamp = delta_oline_per _iline / determinant

aoo

. Apply the input line/samp per output line/samp sensitivities to the output line/samp offset

due to the attitude perturbation, to find the equivalent input space offset :
a. d_iline = delta_iline_per_oline * (line[0] — line0) + delta_iline_per_osamp * (samp|[0] —
samp0)
b. d_isamp = delta_isamp_per_oline * (line[0] — line0) + delta_isamp_per_osamp *
(samp[0] — samp0)
Divide by the attitude perturbation to compute the input line/sample to attitude jitter
sensitivities for this axis at this grid point:
a. line_sensfaxis] = -d_iline / perturbation
b. samp_sens[axis] = -d_isamp / perturbation
Where :
line_sens[] is the array of roll-pitch-yaw line sensitivities for the grid.
samp_sens[] is the array of roll-pitch-yaw sample sensitivities for the grid.
perturbation is the 1 microradian attitude perturbation introduced in step 1.
Note that the sign of the sensitivities is inverted in this calculation. This is done because the
sensitivities will be used to compute the equivalent input space corrections needed to
compensate for an attitude disturbance. So, since d_iline is the input space line offset that
is equivalent to one microradian of jitter for the current axis, an offset of —d_iline will
compensate for this jitter.

A 2-by-3 array containing the line and sample sensitivity coefficients for the roll, pitch, and yaw axes
is stored for each grid point.

c) Calculate Map Coefficients Bilinear mapping coefficients for each grid cell are calculated for
mapping from input location to output location (forward mapping) and for mapping from output
location to input location (inverse mapping). A separate mapping function is used for lines and



LDCM-ADEF-001

Version 3
samples. This equates to four mapping functions. A set of four mapping functions is calculated for
each grid cell, for each SCA, for every band, and for every elevation plane that is stored in the grid.

The following methodology is used for calculating one set of four bilinear mapping equations:
A 9x4 matrix is used to fit nine points within a grid cell. The matrix equation takes the form of:
[A]coeff ]= o]

In this equation, matrix A is 9x4, vector b is 9x1, and the coefficient matrix is 4x1. The coefficient
matrix, [coeff], can be solved to obtain the mapping coefficients as:

[coeff |=[AT A]*[ATb]

In the case of solving for an equation to map an input line and sample location to an output sample
location, belonging to one grid cell, the matrices can be defined as:

Ano=1 where n=0,8

Ao,1 = upper left input sample location for current grid cell
Az11 = upper right input sample location for current grid cell
A1 = lower left input sample location for current grid cell
Az 1 = lower right input sample location for current grid cell
As1 = (Ao tA11+A21+A3 1)/4

As1= (Ao1+A1,1)/2

Ag 1= (A11+A31)/2

A71= (A21+A31)/2

Ag 1= (A211A0,1)/2

Ao2 = upper left input line location for current grid cell

A1, = upper right input line location for current grid cell
Az > = lower left input line location for current grid cell

Az, = lower right input line location for current grid cell
As2 = (Ag2tA1+A2 2+Az )4

As2= (Ao 2t+A12)/2

Ag 2= (A1 2+A32)/2

A7 = (A2 2tAs32)I2

Ag 2= (A22+A0,2)/2

Anz=An1*An2 where n=0...8

bo = upper left output sample location for current grid cell
b, = upper right output sample location for current grid cell
b, = lower left output sample location for current grid cell
bs = lower right output sample location for current grid cell
bs = (bo+b1+b2+b3)/4

bs = (bot+b1)/2

be = (b1+b3)/2

b7 = (b2t+bg3)/2

bg = (b2+bo)/2



LDCM-ADEF-001
Version 3

The line and sample locations listed above are defined at the grid cell corners coordinates. The
points interpolated in between the grid cell line segments provide stability for what could be, most
notably a mapping that involves a 45° rotation, an ill-defined solution if only four points were used in
the calculation. The set of coefficients define a bilinear mapping equation of the form:

sample, = coeffy + coeff; * sample; + coeff, * ling; + coeff; * sample; * line;

where:
sample, = output sample location
sample; = input sample location
line; = input line location

The forward mapping equations, mapping input line and sample locations to output line locations can

be solved by swapping output line locations for output sample locations in the matrix [b]. The reverse
mapping equations, mapping output locations to input line and sample, can be found by using output

line and sample locations in the [A] matrix and the corresponding input sample and then line locations
in the [b] matrix.

c).1l. Calculate Forward Mappings
Using the Calculate Map Coefficients algorithm described above generate the mapping polynomial coefficients
needed to convert from a line/sample in input space (satellite) to one in output space (projection). Coefficients
for every cell in the grid are generated.

c).2. Calculate Inverse Mappings

Using the Calculate Map Coefficients algorithm described above generate the mapping polynomial
coefficients needed to convert from a line/sample in output space (projection) to one in input space
(satellite). Coefficients for every cell in the grid are generated.

Stage 5 - Finalize the Grid

The final stage of grid processing generates the global (rough) mapping coefficients, used to initially
identify the appropriate grid cell, and computes the parallax sensitivity coefficients, used to correct for
even/odd detector offset effects, for each grid cell.

a) Calculate Rough Mapping Coefficients

Calculate the rough mapping coefficients for the grid. The rough polynomial is a set of polynomials
used to map output line and sample locations to input line and sample locations. The rough
polynomial is generated using a large number of points distributed over the entire scene, and by
calculating a polynomial equation that maps an output location to an input location. The rough
polynomial is only meant to get a “close” approximation to the input line and sample location for a
corresponding output line and sample location. Once this approximation is made, the value can be
refined to get a more accurate solution. A rough mapping polynomial is found for every SCA, for
every band, and for every elevation plane that is stored in the grid file.

Bilinear mapping was found to be sufficient for the rough mapping. The mapping function therefore
looks like the ones used for each individual grid cell. However, the set up of the matrices to solve for
the mapping coefficients is different:



LDCM-ADEF-001
Version 3
[Allcoeff |=b]

Nx4  4x1 Nx1

Where the matrix [A] is defined by the output line and sample locations, matrix [b] is defined by either
the input lines or input samples, and N is equal to the total number of points stored in the grid for one
elevation plane, of one band, for a single SCA. The rough polynomial is therefore found by using all
the point locations stored in the grid for a given band and elevation plane for a single SCA. There is
one mapping for output line and sample location to input sample location and one mapping for output
line and sample location to input line location.

Grid Cell Polynomial

Calculate a "rough" mapping of output to input lines/samples. These coefficients are used as a first
order approximation to an inverse line-of-sight model. This polynomial is used to initially locate the
grid cell to be used in the resampling process, providing a starting point for the more accurate inverse
model based on individual grid cell parameters.

b) Calculate Detector Offsets Computes the detector offset values and stores linear mapping
coefficients associated with detector offsets in the grid structure. Using the zero elevation plane, for
each band and each SCA, loop on the input lines and samples calculating the odd/even detector
offsets. The detector offsets are set up to account for the geometric differences between the
odd/even, secondary, and tertiary detectors and the “nominal” set of detectors. (See the LOS Model
Creation ADD). These differences are considered to be consistent between actual and nominal
detectors when they occur under the same acquisition conditions, i.e. they are slowly varying. These
actual to nominal detector differences are due to the imperfect trade-off between space (detector
offset) and time (detector delay) that is made when we temporally shift (through the use of Level 1R
image fill) the even/odd and deselected detectors to compensate for their spatial offsets on the focal
plane. The degree to which this time/space trade is imperfect varies with height and, so, the
corrections derived here and stored in the grid structure, are functions of detector offset and height.

There are also the sub-pixel detector specific offsets that are stored in the CPF. These "exact"
detector specific offsets are accounted for in the resampling process. Note that the potential for
deselected detectors has made it necessary to also store per-detector full-pixel offsets in the CPF
(and LOS model). As a result, this detector offset sensitivity logic has been changed to compute the
offset sensitivity per pixel of detector offset rather than a fixed value derived from the static even/odd
detector offset. The routine ols2ils listed below, used for mapping an output line and sample to an
input line and sample using the geometric grid, is discussed in the Image Resampling ADD.

Loop on number of bands stored in grid
Loop on number of SCAs stored in grid
Loop on lines and samples stored in the grid

Get the maximum detector offset value for this band from the CPF.

Calculate the output line/sample location for the current input line and sample
and the zero elevation plane, calculated using the forward model (see below)
with the detector location set to MAXIMUM. This detector type is the same as
ACTUAL but uses the maximum detector offset rather than the detector-specific
value.



LDCM-ADEF-001
Version 3
Map calculated output line/sample back to input space using the geometric grid
and ols2ils.

Delta line/sample per pixel of offset are calculated by:

Alineg = (nominal line - mapped line) / max offset
Asamplep = (nominal sample - mapped sample) / max offset

where:

nominal line = current grid cell line location

mapped line = input line location from ols2ils mapped "maximum™ output
line

nominal sample = current grid cell sample location

mapped sample = input sample location from ols2ils mapped “maximum”
output sample

max offset = detector offset used in the MAXIMUM forward model
calculations

These delta lines and samples represent the input space correction necessary to
compensate for the difference between nominal and actual detectors per pixel of
detector offset, for the zero elevation plane.

Repeat these calculations for the maximum elevation plane to compute Aliney
and Asampley where H is the elevation corresponding to the maximum z-plane.

Compute the line and sample even/odd offset sensitivity coefficients:

Co = Alineg

c1 = (Aliney - Alineg) / H

do = Asampleg

d; = (Asampley - Asampleg) / H

Note that ¢y and dp are in units of pixels per pixel and c; and d; are in units of
pixels per meter per pixel.

These c; and d; coefficients are stored in the projection grid to be used during the
resampling process.

Output Line/Sample to Input Line/Sample

Map output space line/sample locations back into its corresponding input space line/sample locations.
This is done using the "rough” polynomial from the grid to determine an initial guess at an input space
line and sample. From this initial guess a grid cell row and column is calculated and the inverse
coefficients for that cell are retrieved from the grid. These coefficients are used to determine an exact
input space line and sample (in extended space).

Find Grid Cell
This utility function finds the correct cell that contains the output line/sample. It finds the correct grid
cell containing the output pixel by first determining the set of grid cells to be checked. It then calls a



LDCM-ADEF-001
Version 3
routine to perform a "point in polygon" test on each of these grid cells to determine if the pixel does
indeed fall within that grid cell.

Forward Model
Having described the grid generation procedure we now turn to the forward model, referred to
extensively above, in more detail.

For a given line, sample and band, propagate the forward model to determine a latitude and longitude
for the specified point. This involves finding the time of the observation, constructing the instrument
line-of-sight, calculating the spacecraft attitude and ephemeris for the observation time, and
intersecting the projected line-of-sight with the Earth’s surface. The entire forward model procedure is
referred to as LOS projection and is described step by step below.

a) Project LOS
Find the position where the line of sight vector intersects the Earth's surface. It invokes the following
sub-algorithms:

a).1l. Find Time Find the time into the scene given the line, sample, and band. The input sample
number is O-relative and relative to the SCA. The accounting for the odd/even, secondary, and tertiary
detector offsets is based on the value of the dettype variable which may be NOMINAL, ACTUAL,
MAXIMUM or EXACT. Note that the EXACT selection is treated the same as ACTUAL. This is due to
the fact that even though fractional-pixel detector offsets can occur, the compensating time shifts
implemented by inserting fill pixels can only be introduced in whole-line increments. So, the sub-pixel
difference between the ACTUAL and EXACT detector types affects only the LOS angle not the time.
The MAXIMUM detector type represents a theoretical offset that is used for calculate the odd/even
offset, or parallax, coefficients within the grid. This maximum is stored as #define in the prototype
code, called MAX_DET_DELAY.

Due to the staggered odd/even and multiple pixel select detectors, a nominal and an actual time can
be found in a scene. If the current position within the image is given as a line and sample location,
the two different “types” of times for multispectral pixels are calculated by:

if detector type is set to MAXIMUM
detector_shift x = maximum_detector_shift
[Or_fill_pixels = round(detector_shift_x) + nominal_fill
else
detector_shift_x = shift stored in geometric model
[0r_fill_pixels = Fill from LOrp (also stored in geometric model)

time_index = MS_line - 10r_fill_pixels
if (time_index <0) time_index =0
if (time_index > (num_time_stamps - 1)) time_index = num_time_stamps - 1

MS_actual_time = line_time_stamp[time_index] - MS_settle_time - MS_integration_time/2
+ (MS_line - 10r_fill_pixels - time_index) * MS_sample_time

MS_nominal_time = MS_actual_time + (I0r_fill_pixels — nominal_fill) * MS_sample_time

where:



LDCM-ADEF-001
Version 3

MS_line is the zero-referenced multispectral line number (N).
[0r_fill_pixels is the total amount of even/odd detector alignment fill to be inserted at the
beginning of the pixel column associated with the current detector. This table is stored in
the LOS model.
num_time_stamps is the total number of time codes (data frames) in the image. It is tested
to ensure that time_index, the line_time_stamp index, does not go out of bounds.
detector_shift_x (unless type is MAXIMUM) is the amount of even/odd detector offset for
the current detector from the LOS model detector delay table. It is rounded to the nearest
integer pixel because time offsets can only occur in whole line increments. This detector
shift is stored within the geometric model.
MS_settle_time is a small sample and hold time delay constant.
nominal_fill is the nominal fill associated with current band and SCA.
maximum_detector_shift is the theoretical offset used in calculating the geometric effects
associated with the odd/even offset of the detectors.

The MS_settle_time correction is expected to be a small (tens of microseconds) constant offset that
should be captured in the CPF. The detector_shift_x offset parameter from the LOS model detector
delay table is rounded to include the effects of even/odd detector stagger and detector deselect but
not the detector-specific sub-pixel offsets.

For the panchromatic band the corresponding equations for a pan detector in the two pan lines (2N
and 2N+1) associated with MS line N are computed as:

if detector type is set to MAXIMUM
detector_shift x = maximum_detector_shift
[Or_fill_pixels = round(detector_shift_x) + nominal_fill

else

detector_shift_x = shift stored in geometric model
[0r_fill_pixels = Fill from LOrp (also stored in geometric model)

time_index = floor( (pan_line - 10r_fill_pixels)/2)
if (time_index <0) time_index =0
if (time_index > (hum_time_stamps - 1)) time_index = num_time_stamps - 1

Pan_actual_time = line_time_stamp[time_index] - Pan_settle_time - Pan_integration_time/2

+ (pan_line - 10r_fill_pixels - 2*time_index)*Pan_sample_time

Pan_nominal_time = Pan_actual_time + (I0r_fill_pixels — nominal_fill) * Pan_sample_time

where:

pan_line is the zero-referenced panchromatic line number (2N or 2N+1).

I0r_fill_pixels is the total amount of even/odd detector alignment fill to be inserted at the
beginning of the pixel column associated with the current detector. These values are stored
in the LOS model. Note that these values will always be even for the panchromatic band.
num_time_stamps is the total number of time codes (data frames) in the image. It is tested
to ensure that time_index, the line_time_stamp index, does not go out of bounds.
detector_shift_x (unless type is MAXIMUM) is the amount of even/odd detector offset for
the current detector from the LOS model detector delay table. It is rounded to the nearest



LDCM-ADEF-001
Version 3
integer pixel because time offsets can only occur in whole line increments. This detector
shift is stored within the geometric model.
e Pan_settle_time is a small sample and hold time delay constant.
e nominal_fill is the nominal fill associated with current band and SCA.
e maximum_detector_shift is the theoretical offset used in calculating the geometric effects
associated with the odd/even offset of the detectors.

For the panchromatic band, the 10r_fill_pixels and detector_shift x parameters are in units of
panchromatic pixels.

a).2. Find LOS Find the line of sight vector in sensor coordinates, using the Legendre polynomial
LOS model stored in the LOS model, as follows:

Find normalized detector for Legendre polynomial:

2*(current detector)

1
(number of detectors-1)

normalized detector =

where:
current detector = sample location (in the range 0 to number of detectors-1)
number of detectors = number of detectors (samples) for current band and SCA
(from LOS model)

Find across track (y) and along track (x) angles:

x = coef _x, +coef _x, *(normalized detector)+ coef _x,*(L.5* (normalized detector)* —0.5)

y = coef _y, +coef _y, *(normalized detector)+ coef _y, * (1.5* (normalized detector)’ —0.5)
where:
coef_x = Legendre coefficients for along track direction
coef_y = Legendre coefficients for across track direction
(Note: coef x and coef y are read from the CPF and stored in the LOS model)

If LOS requested is ACTUAL, add the whole pixel detector shift (detector, band, and SCA
dependent for OLI) from the LOS model. This detector shift is only in the along track
direction. Note that the LOS model contains the combined whole pixel and sub-pixel detector
offset, so it must be rounded to the integer part for the ACTUAL detector type and left
unrounded for the EXACT detector type.

X = X + round(detector_shift_x) * IFOV

If LOS requested is EXACT, then add individual detector offsets (detector number, band, and
SCA dependent). This detector shift is in both the along and across track directions. These
values are stored within the LOS model.

X = X + (detector_shift_x) * IFOV
y =y + (detector_shift_y) * IFOV



LDCM-ADEF-001
Version 3

Note that the detector_shift_y parameter, from the LOS model detector delay table, is always
sub-pixel. See LOS Model Creation ADD for further explanation of
NOMINAL/ACTUAL/EXACT line of sight.

If the LOS request in MAXIMUM then add the maximum, or theoretical, detector offset.

X = X + (maximum_detector_shift_x) * IFOV

Calculate LOS vector.

X
[los]=1y
1
Normalize LOS.
los = @
[tos]

a).3. Find Attitude
Find the precise roll, pitch and yaw at the specified time. This routine uses the "corrected" version of
the attitude data stored in the OLI LOS model. This attitude data sequence includes the effects of
ground control point precision correction (if any).

Find the current time relative to attitude data start time stored in the LOS model.

dtime = time + image epoch time — attitude epoch time

Note:
time = nominal time of input sample relative to the start of the image epoch time
= image start time from LOS model, only need seconds of day field since all
epochs are adjusted to the same day.
attitude epoch time = attitude data start time from LOS model, only need seconds
of day field since all epochs are adjusted to the same day.

Find index into attitude data (stored in model) corresponding to dtime:

index = floor( dtime ]

attitudesampling rate

where:
attitude sampling rate = sample period from LOS model

This attitude index determination could also be implemented as a search through the attitude
data time stamps which are stored in the LOS model. The selected index would be the index
of the last time that does not exceed dtime.

Attitude is found by linearly interpolating between the attitude values located at index and
index+1 using the corrected attitude sequence from the LOS model:



LDCM-ADEF-001
Version 3
_ fmod(dtime, attitudesampling rate)

attitudesampling rate

roll = model roll, ., + (model roll,, ..., —model roll .. )*w
pitch=model pitch, .., +(model pitch —model pitch,, . )*w
yaW = mOdeI yaWindex + (mOdeI yaWindex+1 - mOdeI yaWindex) *w

index+1

a).3.i. Find Jitter Find the high frequency roll, pitch and yaw corrections at the specified input image
line/sample coordinate. This routine uses the jitter table stored in the OLI LOS model. This table is
time aligned with the OLI panchromatic band line sample times, so the jitter table look-up proceeds
directly from the input line/sample coordinates:
Find the current detector number from the input sample location:
detector = round(sample)
Verify that the detector is in the valid range for this band (return error if not).
Look up the number of LOR fill pixels for this detector (from the fill table).
Calculate the jitter table index:
If (band = pan)
Index = round(line) — I0r_fill_pixels
Else
Index = 2*(round(line) — |0r_fill_pixels)
Verify that jitter table index is within the valid range for the table (return zeros if not).
Extract the roll-pitch-yaw jitter values for the current index from the jitter table and return
these values.

Note that the jitter values are a direct look-up without interpolation. This does not compromise
accuracy because this function is only used for cases of EXACT detector projection (e.g., the OLI
data simulator) for which the input line/sample coordinates are integers. The jitter values extracted by
Find Jitter are added to the low frequency roll-pitch-yaw values interpolated by Find Attitude by the
calling procedure Get LOS when the EXACT option is in force.

a).4. Move Satellite Sub-Algorithm Compute the satellite position and velocity at a delta time from
the ephemeris reference time using Lagrange interpolation. This is a utility sub-algorithm that
accesses the "corrected” version of the model ephemeris data to provide the OLI position and velocity
at any specified time. Since the model ephemeris arrays are inputs to this sub-algorithm it will work
with either the ECI or ECEF ephemeris data.

Calculate time of current line/sample relative to start time of ephemeris start time.
reference time = time + image epoch time — ephemeris epoch time

where:
time = nominal time of input sample relative to the start of the imagery
image epoch time = image start time from LOS model, only need seconds of day since all
epochs are on same day.
ephemeris epoch time = ephemeris start time from LOS model, only need
seconds of day since all epochs are on same day.

Find index into ephemeris data stored in model.



LDCM-ADEF-001

Version 3
index — floor refergnce_ time  number of Lagrange points
ephemeris time steps 2
where:

ephemeris time steps = time between ephemeris samples
number of Lagrange points = number of points to use in Lagrange interpolation

Use Lagrange interpolation to calculate satellite position and velocity in ECEF (or ECI,
depending on which sequence is provided) coordinates at time of current line/sample.

X = Lagrange(model satellite ECEF/ECI x[index])
Y = Lagrange(model satellite ECEF/ECI y[indeXx])
Z = Lagrange(model satellite ECEF/ECI z[index])
XV = Lagrange(model satellite ECEF/ECI vx[index])
YV = Lagrange(model satellite ECEF/ECI vx[index])
ZV = Lagrange(model satellite ECEF/ECI vx[index])

where:
X = satellite x coordinate
Y satellite y coordinate
Z = satellite z coordinate
XV = satellite x velocity
YV = satellite y velocity
ZV = satellite z velocity

a).5. Convert Sensor LOS to Geocentric
Find the line of sight vector from the spacecraft to a point on the ground by transforming the line of
sight vector in sensor coordinates to perturbed spacecraft coordinates.

Use the OLI alignment matrix in the LOS model to convert the LOS vector from sensor to
body. Then apply roll, pitch, and yaw to the LOS to convert body to orbital. Finally, use the
ephemeris to construct the orbital to ECEF rotation matrix and use it to transform LOS to
ECEF.

First, using the 3x3 ACS to instrument alignment transformation matrix stored in the LOS
model, calculate the instrument to ACS transformation matrix.

[Instrument to ACS|=[ACS to Instrument]™

Transform LOS from Instrument to ACS/body coordinates.

[navigation los]=[Instrument to ACS]los]

Calculate attitude perturbation matrix using interpolated attitude values. Note that these
values include the effects of precision LOS correction (if any) as these will be built into the
"corrected" attitude stream in the LOS model. The Earth-view acquisitions the roll-pitch-yaw
values will be with respect to the orbital coordinate system but for celestial acquisitions they
will be with respect to ECI.



LDCM-ADEF-001
Version 3

Calculate perturbation matrix, [perturbation], due to roll, pitch, and yaw:

[attitude perturbation] =Y ., [Py [Rron] =

cos(p)cos(y)  sin(r)sin(p)cos(y) + cos(r)sin(y) sin(r)sin(y) —cos(r)sin(p)cos(y)
—cos(p)sin(y) cos(r)cos(y) —sin(r)sin(p)sin(y) cos(r)sin(p)sin(y) + sin(r) cos(y)
sin(p) —sin(r) cos(p) cos(r) cos(p)

Calculate new LOS in orbital coordinates (Earth-view) or ECI (celestial) due to attitude
perturbation:

[perturbation los] = [perturbation [navigation los]

For Earth-view acquisitions, calculate the transformation from Orbital Coordinates to ECEF.
The position and velocity vectors used in calculating the transformation are those calculated
above. These vectors are in ECEF allowing the LOS to be transformed from the instrument
coordinate system to the ECEF coordinate system.

Transform perturbed LOS from Orbital to ECEF.

[ECEF los] = [ORB2ECEF [perturbation los]

For celestial acquisitions, the ECI los ([perturbation los]) is returned.

a).6. Find Target Position
Finds the position where the line of sight vector intersects the Earth's surface.

Intersect the LOS in ECEF with the Earth model calculating the target ECEF vector. The ECEF vector
is then used to compute the geodetic latitude and the longitude of the intersection point.

A

Pro

N ~+

v

Figure 7: Intersecting LOS with Earth model

Where:



rs = satellite position vector
re = geocentric Earth vector
los = line-of-sight vector

Intersect LOS with ellipsoid

a) Rescale vectors with ellipsoid parameters.

. [rsx rsy rsz
rs'=|— — —

a a b
re-{ﬂ rey E}
a a b
log'— [Iosx losy Iosz}
a a b

where:
a = semi-major axis of Earth ellipsoid
b = semi-minor axis of Earth ellipsoid
rs' = rescaled satellite position vector
re' = rescaled geocentric Earth vector
los' = rescaled LOS vector

b) From the Law of Cosines

ref” =[a*los" +|rsf’ ~2d *los{rs|cos()
where:

d = los’ vector length
® = angle between rs’ and los’

By definition |re’ | =1

LDCM-ADEF-001
Version 3

Rearranging the equation determined from the Law of Cosines in terms of the

constant d.

d?flos! +2d (los'srs’)+ rs| —1

Solving for d using the quadratic equation.



LDCM-ADEF-001
Version 3

~ —[los'ers] —\/|Ios'ors'|2 —|Ios'|2([rs'|2 —1)

st

c) Compute new target vector.
re'=rs+d *los'
d) Rescale target vector.
re=[a*rex a*rey’ b*rez]
e) Compute Geodetic coordinates (see Geocentric to Geodetic below).

(rex, rey, rez) = (@, 4,1y
If target height (H), or elevation corresponding to current z plane, is not zero:
Initialize:
Target vector: rt=re
Target height:  hpy=0
Iterate until Ah =(h;-H) is less than TOL
a) Calculate delta height.

Ah=h;-H

b) Compute length of LOS.

d = /(rex—rsx)? +(rty — rsy)? +(rtz — rsz)?
where:
d = length of LOS vector
rt = target vector
rs = spacecraft position vector
c) Compute LOS /height sensitivity.

g=nelos

Where n is a vector normal to the ellipsoid surface.

n =[cos(g)cos(%,) cos(g)sin(4) sin(4)]

and:
g = LOS height sensitivity coefficient



LDCM-ADEF-001
Version 3
los = LOS unit vector

@ = current estimate of ground point latitude
Ai = current estimate of ground point longitude

d) Adjust LOS.
d=d+qg*Ah
e) Re-compute target vector.
rt=rs+d*los

f) Calculate new geodetic coordinates and corresponding height above ellipsoid.

(rtX, rty’ rtZ):> (¢i+l’ j‘1+1’ hi+l)

Calculate the geodetic latitude and longitude from the final ECEF vector.

a).7. Geocentric to Geodetic The relationship between ECEF and geodetic coordinates can be
expressed simply in its direct form:

e’=1-b*/a®
N=al/(l-e?sin’(p))*?
X = (N + h) cos(¢) cos(A)
Y = (N + h) cos(¢g) sin(A)
Z = (N (1-€%) + h) sin(¢)

where:
XY, Z - ECEF coordinates
@, A h - Geodetic coordinates (lat ¢, long A, height h)
N - Ellipsoid radius of curvature in the prime vertical
e? - Ellipsoid eccentricity squared
a,b - Ellipsoid semi-major and semi-minor axes

The closed-form solution for the general inverse problem (which is the problem here) involves the
solution of a quadratic equation and is not typically used in practice. Instead, an iterative solution is
used for latitude and height for points that do not lie on the ellipsoid surface, i.e., for h # 0.

To convert ECEF Cartesian coordinates to spherical coordinates:

Define:



LDCM-ADEF-001
Version 3

radius = v X2 +Y?2+ 22
'=sin™?
¢ (radiusj

A= tanl(ij
X

Initialize:

0=¢
h, =0

Iterate until abs(h;-hi+1) < TOL

__a*vl-e
J1-e*cos?(6)

Q= tanl(M)

1-e

re

Ap=¢p-0
rs = radius” — re? *sin’(A¢)
h.,, =~/rs —re*cos(Agp)

0 =¢p'-sin| — hi+1.
radius *sin(Ag)

Projection Transformation

Convert coordinates from one map projection to another. The transformation from geodetic
coordinates to the output map projection depends on the type of projection selected. The
mathematics for the forward and inverse transformations for the Universal Transverse Mercator
(UTM), Lambert Conformal Conic, Transverse Mercator, Oblique Mercator, Polyconic, and the Space
Oblique Mercator (SOM) map projections are handled by U.S Geological Survey’s (USGS) General
Cartographic Transformation Package (GCTP), which may be obtained at
http://edcftp.cr.usgs.gov/pub/software/gctpc/.



ftp://edcftp.cr.usgs.gov/pub/software/gctpc/

LDCM-ADEF-001
Version 3
Grid Structure Summary
Tables 1 and 2 below show the detailed contents of the geometric grid structure.

Geometric Grid Structure Contents

Satellite Number (8)

WRS Path

WRS Row (may be fractional)

Acquisition Type (Earth, Lunar, Stellar)

Scene Framing Information:

Frame Type: PROJBOX, MAXBOX, PATH_MAXBOX, LUNAR, or
STELLAR

Projection Units (text): METERS, RADIANS, ARCSECONDS

Projection Code: GCTP integer code for UTM, SOM, etc...

Datum: WGS84

Spheroid: GCTP integer code = 12 (WGS84/GRS80)

UTM Zone: UTM zone number (or O if not UTM)

Map Projection Parameters: 15-element double array containing
parameters

Corners: 4 by 2 array of projection coordinates for UL, LL, UR, and LR
corners

Path Oriented Framing Information:

Center Point: latitude and longitude of WRS scene center

Projection Center: Map x/y of WRS scene center

Rotation Angle: Rotation (from true north) of the path frame (degrees)

Orientation Angle: Rotation (from grid north) of the path frame
(degrees)

Active Image Areas: latitude and longitude (in degrees) of the four
corners of the active image area (excluding leading and trailing SCA
imagery) for each band

Grid Structure Information:

Number of SCAs

Number of Bands

Band List: array of band IDs included in grid

Array of band grid structures, one for each SCA in each band (see Table
2)

Table 1: Geometric Grid Structure Contents

Grid Structure Contents for Each SCA in Each Band

Band number

Grid cell size: number of image lines and samples in each grid cell

Grid cell scale: 1/lines per cell and 1/samples per cell

Pixel size: in projection units (usually meters)

Number of lines in output image

Number of samples in output image

Number of lines in grid (NL)

Number of samples in grid (NS)

Number of z-planes (NZ)

Index of zero-elevation z-plane




LDCM-ADEF-001
Version 3

Z-plane spacing: elevation increment between z-planes

1D array of input line numbers corresponding to each grid row

1D array of input sample numbers corresponding to each grid column

3D array of output lines for each grid point (row-major order) (NS*NL*NZ)

3D array of output samples for each grid point (row-major order)
(NS*NL*NZ)

Array of line ¢y, c; even/odd offset coefficients (row-major order) (2*NS*NL)

Array of sample do, d; even/odd offset coefficients (row-major order) (2*
NS*NL)

3D array of forward mapping (ils2ols) coefficient sets (NS*NL*NZ)

3D array of inverse mapping (ols2ils) coefficient sets (NS*NL*NZ)

3D array of line jitter sensitivity coefficient vectors (note 2) (3*NS*NL*NZ)

3D array of sample jitter sensitivity coefficient vectors (note 2)
(3*NS*NL*NZ)

Degree of rough polynomial

Array of rough line polynomial coefficients ((degree+1) * NZ values)

Array of rough sample polynomial coefficients ((degree+1)” * NZ values)

Table 2: Per Band Geometric Grid Structure Contents

Geometric Grid Size

To fully capture the potential variability of the 50 Hz attitude data that will be available within the
LDCM ancillary data stream would require a grid spacing of 5 lines. This may be impractical.
Fortunately, the OLI error budgets assumed that attitude variations at frequencies up to only 10 Hz
would be corrected in the LOS model. Such variations can be captured by sampling at 20 Hz or
higher. This corresponds to a grid spacing of 11-12 lines. The grid has been successfully tested down
to a line sampling of 10 but this does make for a large grid structure. The inclusion of a high
frequency jitter table in the OLI model and jitter sensitivity coefficients in the grid structure allow the
grid to be less dense in the time (line) dimension. The baseline assumption is that attitude
frequencies above 3 Hz will be relegated to the jitter table allowing the grid density to be reduced to
30 lines thus saving grid space even with the addition of the new jitter sensitivity fields.

7.2.2.8 Notes

Some additional background assumptions and notes include:

1. The NOVAS planetary ephemeris file provides the lunar ephemerides used to define the reference
output space for lunar image processing. This file is in the original JPL format and is provided to
the NOVAS routines as an input.

2. The TIRS implementation of the LOS projection grid will include another new feature that has also
been applied to OLI as of version 3.4 of this algorithm — a set of sensitivity coefficients that map
roll-pitch-yaw deviations to the corresponding line and sample differences, for each grid cell.
These sensitivity coefficients will be used by the resampler to convert high frequency (per image
line) attitude variations to line and sample adjustments. Modeling the high frequency deviations
separately and correcting them in the resampler allows for a sparser and more manageable sized
grid.



LDCM-ADEF-001
Version 3
7.2.3 OLI Line-of-Sight Model Correction Algorithm

7.2.3.1 Background/Introduction

The line-of-sight (LOS) model correction algorithm uses the results of ground control point (GCP)
measurements in an image that was systematically and terrain corrected using the original LOS
model, to derive estimates for corrections to the model. Corrections to the spacecraft attitude and
ephemeris are computed in a least squares procedure which minimizes the differences between the
measured locations of the control points and their true ground locations. This procedure includes the
detection and removal of outlier GCPs using a modified t-distribution test. These corrections are
added to the LOS model structure to create a “precision” model for subsequent use by other
geometric algorithms. Creating the precision model involves repeating some of the processing
originally performed by the LOS model creation algorithm to incorporate the model corrections. Once
the precision model corrections are computed the algorithm performs simple threshold tests (e.g., on
the pre-fit and post-fit RMS GCP residuals and the percentage of GCPs declared outliers) to
determine if the solution was successful. If the solution is not successful, the LOS model is not
updated with the corrections.

The OLI LOS model correction algorithm is derived from the ALI precision correction algorithm used
in ALIAS. Its implementation should be very similar to the aliprecision application. As with the LOS
model creation algorithm, model correction makes extensive use of the ALIAS geometric sensor (axx)
and spacecraft (exx) model libraries.

7.2.3.2 Dependencies

The LOS Model Correction algorithm assumes that ground control points exist for the ground site and
that the Model Creation, LOS Projection and Gridding, and Image Resampling algorithms have been
executed to create a systematic terrain corrected image for GCP mensuration. Note that the band
selection and resolution of this mensuration image will depend upon the flow being executed/control
source being used. For standard L1T product generation the GLS control (SWIR1 band, 30m
resolution) will be used whereas for characterization and calibration flows the DOQ control
(panchromatic 15m) will be used. It further assumes that the GCP Correlation algorithm/utility has
been executed to measure the GCP locations in the mensuration image. The mensuration image may
be either SCA-separated or SCA-combined though SCA-combined images will be the preferred mode
of operation.

7.2.3.3 Inputs

The LOS Model Correction algorithm uses the inputs listed in the following table. Note that some of
these “inputs” are implementation conveniences (e.g., using an ODL parameter file to convey the
values of and pointers to the input data; including data set IDs to provide unique identifiers for data
trending).

Algorithm Inputs

ODL File (implementation)

Measured GCP file name

OLI LOS model file name

OLI grid file name

DEM file name

CPF file name

L1G image file name

Precision solution parameters:

Apriori weights for attitude correction parameters (in microradians and
microradians/second)




Apriori weights for ephemeris correction parameters (in meters and meters/second)

Correction model parameterization options (att_orb, eph_yaw, both, weight - default is
"both")

Bias correction or rate of change correction option (time flag)

Apriori weights for GCP measurements (in at-sensor microradians)

Iteration limit

Outlier threshold

Processing Options (implementation):

Residual Trending On/Off Switch (new)

Solution/Alignment Trending On/Off Switch (new)

LORp ID (for trending)

Work Order ID (for trending)

Measured GCP File Contents (see GCP Correlation ADD for additional details)

GCP image positions

GCP ground coordinates

OLI Grid File Contents (see LOS Projection ADD for additional details)

Arrays of Input/Output Mappings

Output Image Frame (e.g., corners, map projection)

OLI LOS Model Contents (see LOS Model Creation ADD for additional details)

WRS Path/Row

Number of input image (L1R) lines

Smoothed image time
codes

Integration Time (pan and multispectral bands) (new)

Smoothed ephemeris at 1 second intervals

Earth orientation parameters (UT1UTC, pole wander)

OLI to ACS reference alignment matrix/quaternion

Spacecraft CM to OLI offset in ACS reference frame (new)

Focal plane model parameters (number of SCAs, number detectors/band, Legendre
coefficients)

Detector offset table (including detector deselect offsets) (new)

CPF File Contents

Pre-fit RMS threshold

Post-fit RMS threshold

Percent outlier threshold

Minimum number of valid GCPs threshold

L1G Image File Contents

L1G Metadata

DEM File Contents (see Maturity items 5 and 6)

DEM Metadata (new)

Elevation Data (new)

7.2.3.4 Outputs

Precision LOS Model (only items that are updated from the input LOS model are listed
below)

Updated corrected ephemeris at 1 second intervals

Updated corrected attitude data sequence

Precision correction reference date/time

Precision attitude and ephemeris corrections

LOS Model Correction Solution File (see Table 1 below for additional details)

LOS model correction reference date/time

Final iteration precision correction values

Final iteration precision correction covariance

LOS Model Correction Residuals File (see Table 2 below for additional details)

LDCM-ADEF-001
Version 3



LDCM-ADEF-001
Version 3

GCP residuals for each point for each iteration

Correction Solution and Alignment Trending Data (new) (see Table 3 below for additional
details)

Precision correction reference date/time

Precision attitude/ephemeris correction values (see note 1)

Reduced precision correction covariance (see note 2)

Solution quality metrics (see note 4)

Control type used (GLS or DOQ)

Off-nadir angle (in degrees)

LORp ID

Work Order ID

WRS Path/Row

Correction Residuals Trending Data (see note 3) (new) (see Table 4 below for additional
details)

WRS Path/Row

GCPID

GCP Type (GLS or DOQ)

Date/Time of imaging

Spacecraft position/velocity at image time

GCP ground coordinates (lat,lon,height)

Apparent GCP position (lat, lon, height) in mensuration image

LOS Model Correction Success/Failure Status Return (new)

7.2.3.5 Options

Solution/Alignment Trending On/Off Switch
Residual Trending On/Off Switch

7.2.3.6 Procedure

The LOS correction procedure uses the ground control point (GCP) measurements collected by the
GCP Correlation algorithm to estimate updates to the spacecraft attitude and ephemeris data which
minimize the discrepancies between the actual (known) GCP locations and the apparent locations
measured in the terrain corrected L1G image. The solution method adopted for OLI is essentially the
same as that used for Landsat 7 and for the ALI wherein "truth" and "observed" line of sight (LOS)
vectors are constructed in the orbital coordinate system and a weighted least squares solution is used
to minimize the misalignments between the truth and observed vectors. The solution supports the
estimation of offset and rate corrections for all three ephemeris position axes and for all three attitude
angles (roll-pitch-yaw) though options are provided to reduce the number of parameters (e.g., solve
for offsets only) to accommodate situations where the ground control points are few in number, poorly
distributed, or inaccurate.

There are several differences in the implementation of the OLI LOS correction model as compared to
the previous missions. The first is a change in the coordinate system in which the corrections are
applied. For Landsat 7 and ALI data, the precision corrections were applied in the orbital coordinate
system. For OLI, they are applied in the spacecraft body/attitude control system coordinate system
(this was also noted in the Ancillary Data Preprocessing ADD). For nadir-viewing scenes there is little
difference but the case of off-nadir viewing leads to a few adjustments to the heritage algorithm in
what follows.

The second significant difference is in the way that the corrections are reflected in the precision LOS
model created as an output by this procedure. In the heritage implementation, the ephemeris
corrections were used to update the model ephemeris data sequence but the attitude corrections



LDCM-ADEF-001
Version 3

were stored as a separate correction model that was applied explicitly in the forward model. For OLI,
corrected versions of both the ephemeris and attitude data sequences are computed using the LOS
correction solution results. These corrected data are stored in the LOS model along with the original
ephemeris and attitude values. The parameters of the correction model are also included in the model
though they are there primarily for documentation purposes and are no longer used in the forward
model computation.

The third difference is the inclusion of a portion of the sensor alignment calibration logic into the LOS
correction algorithm. This logic uses the OLI to ACS alignment matrix stored in the OLI LOS model to
convert the computed attitude offset corrections to OLI alignment angles. This yields updated
estimates of the OLI to ACS alignment angles that are output to the characterization database for
subsequent trending in the sensor alignment calibration procedure.

A fourth difference is the use of L1G terrain but not precision corrected images to measure the control
points (see the GCP Correlation ADD). This gives the apparent (measured) GCP location a non-zero
height coordinate. The true GCP elevation (from the known GCP ground location) could be used but it
is more correct to interpolate the apparent point height from the DEM used to create the terrain
corrected L1G mensuration image. The use of terrain corrected mensuration images also allows
these images to be SCA-combined since the SCA overlap areas will be geometrically consistent.

The mathematical underpinnings of the LOS correction algorithm are presented first, followed by an
overview of the procedure for implementing the algorithm.

Mathematical Development

The mathematical background of the LOS correction algorithm is presented in the following sub-
sections. In what follows the equations presented are numbered so that they can be more easily
referenced in the subsequent mathematical formulation and in the algorithm procedure sections.

1. Formulating the Observations

The geometric measurement in the OLI sensor system can be regarded as the look vector, ls, in the
spacecraft body-fixed system. This vector is transformed into the Orbit Reference Frame (OB) system
(see Figure 1) as described in the Ancillary Data Preprocessing ADD, through the spacecraft attitude
parameters:

lob = T7(6f, By, 0y) Isc. (1.1)

where 6, 0,, and 6y are roll, pitch, and yaw angles, T is the transformation matrix, and can be
expressed as

T (O, 0p, By) = R3(8y)R2(6p)R1(6r)
cosd,cos 6, cosfsing, +singdsind cosd, singsing, - cosd,sind coso,

= | -cosgsing, coso,cos, -singsing,sing, sind,cosd, +cossing,sing,
sing, -sing,cos g, €0s 6,cos 4,



LDCM-ADEF-001

Version 3
1 6, -6,
=1-6, 1 6 (1.2)
6, -6 1

p

where Ry, Ry, and R3 are the coordinate system transformation matrix for rotation around x, y and z-
axis respectively.

Figure 1. Definition of Orbit Reference System

The vector Iy is further transformed into the ECF system
let = Te(ref, Ver) lob (1.3)

where T; is the forward transformation for vectors from the OB system to the ECF system, as a
function of the satellite position rer and velocity ves vectors in the ECF system. Note that ves should be
the "inertial" velocity expressed in the ECF system as described in the Ancillary Data Preprocessing
ADD. Vector l¢, together with the satellite position vector, res, is then used to intersect the ellipsoid
Earth surface to pin down a point position, Res, as the target point on the Earth. This is the common
forward image pixel geolocation calculation (forward model). Note that when using a terrain corrected
L1G mensuration image, the Ref point represents the intersection of the LOS with the DEM used to
create the L1G image rather than the Earth ellipsoid surface. The target point will thus have a non-
zero height coordinate.

Mathematically, Res is a function of Isc, 6y, 0p, Oy, rer, and Ver.
Ref = F(lsc, en ep, ey, lef, Vef) (1-4)

Because of errors in the satellite orbit ephemeris and attitude data, this calculated R is different than
the true location of the image pixel. If we know the true location of a landmark pixel (Rcp) from other



LDCM-ADEF-001
Version 3
sources (i.e., base map, survey etc.), this point can be taken as a GCP to check the accuracy of the
computed image pixel location. The precision correction process uses the GCP coordinates to
estimate the correction to the satellite ephemeris and attitude data, so that with the corrected
parameters in equation (1.4) the calculated image pixel location, Re, will be close to its true location,
Rcp (depending on the GCP positional accuracy).

To calculate the precision correction, the difference between Rer and Ry is taken as the observable,
and the observation equation becomes:

dR = ch - F(lsc, 6, epy eyy lef, Vef) (1.5)

according to equation (1.4). However, the actual calculation of R is usually not an explicit function of
the orbit and attitude parameters, especially for the intersecting procedure. Therefore, it is
inconvenient to linearize equation (1.5) with standard estimation techniques. Instead, the calculation
of look vector I¢, corresponding to Rep, in the OB system, is much more explicit:

R —
Icp :Ti (refivef)(cp—ref) (16)

‘ cp Fe

where (Rep - rer) is the LOS vector in the ECF system corresponding to Rep, and Ti(ref, Ver) is the
inverse transformation for the look vector from the ECF system to the OB system. If all the satellite
attitude and ephemeris parameters are accurate, the I, from equation (1.6) and o, from equation
(1.1) should be equal. Since the measurement |s. is accurate compared to the attitude and ephemeris
information, any systematic difference between I¢, and lo, can be attributed to the attitude and orbit
errors. Thus we can use the difference between I, and |o, as the observable.

(ch - r-ef)
dl = |cp - |ob = Ti(ref, Vef)‘— - T(er, ep, ey) ISC (1.7)

cp ef

The task of precision modeling is then to calculate the correction to those satellite ephemeris and
attitude parameters (i.e., ref, Ver and 0's) so that the residuals of dl after correction are minimized for
all selected GCPs. The orbit correction is modeled as a linear function of time for each component in
the OB system. Referred to as the short arc method, this purely geometric method shifts and rotates
the short arc of orbit defined by the original ephemeris points to fit the GCP measurements.

2. Linearizing the Observations
These observation equations can be linearized with the following steps. In equation (1.7), the
calculation of |y, can also be carried out through

lob = Ti(ret, Ver)(Ref - Tef) / | Ref - Fef | (2.1)

if Res is more conveniently accessible. Since equation (2.1) is simply the inverse of equation (1.4) and
equation (1.3), the Iy, calculated from equation (2.1) is the same as the one in equation (1.1) except
for the possible inclusion of numerical errors. However, it should be mentioned that the true
relationship between |, and the parameters is always equation (1.1). Equation (2.1) should not be
confused with this because R in equation (2.1) is not an independent variable but a function of



LDCM-ADEF-001
Version 3
equation (1.4). So, in observation (1.7) information about the attitude parameters is contained in lgp
and the information about orbit parameters comes from I¢.

Since the measurement of |s. is 2-dimensional in nature, only 2-dimensional information is contained
in equation (1.7) though there are 3 components involved. If a look vector (either I¢, or lop) has the
three components in the OB system.

| = {xl, yl, zI} 2.2)

The real information in these three components can be summarized in two variables like the original
look angle measurements. We chose the following two variables:

& = atan (yl/zl) (2.3)
v = atan (xI/ zl) (2.4)

So that the three components of equation (1.7) can be reduced to the two equations:
o = O¢p — dob (2.5)

B = Wep— Wob (2.6)

Note that in equation (2.3) and (2.4) the components of xl, yl, and zl can be that of LOS vector
instead of unit look vector, so that 5., and ¢, are explicit functions of orbit position. In that case zl is
approximately the height of the satellite.

If we define,
true value = approximate value + correction

and differentiate equations (2.3) and (2.4) with respect to the orbit position (for d¢, and yep),
differentiate equation (1.1) with respect to the satellite attitude (for 5o, and yop) at their corresponding
approximate values, then equations (2.5) and (2.6) can be linearized as the function of correction
parameters.

o = (c0S°8¢p/ h) dy — (oS8, Sindep/ h) dz + do; (2.7)
B = (1.0/h) dx — do, + tand, do, (2.8)

where dx, dy, and dz are the correction to satellite position vector rq, in the OB system, and d6's are
the corrections to the satellite attitude angle 6's. Other quantities are functions evaluated at the
approximate values of re, Ver, and 0's.

The linearization above is done by directly differentiating equation (2.3) and (2.4), with transformation
Ti regarded unaffected by the error in res and ver. This, however, ignores the curvature of the satellite
orbit and the Earth, resulting in about 10% of error in the coefficients of dx, dy, and dz. A more
accurate way to evaluate these coefficients is to examine the sensitivity terms dyp/dx, décp/dy, and
ddcp/dz through the geometry of the look vector (see Figure 2).



LDCM-ADEF-001
Version 3

h I cOsd

Figure 2: Look Vector Geometry

R — the radius of the Earth
r —the radius of the satellite position
h — the altitude of the satellite
d — the magnitude of the look vector (from satellite to target)
& —the across-track angle of the look vector
¢ — the Earth centered angle between the satellite and the target
vy — the zenith angle of the look vector at the target
X,¥,Z — the coordinates of the satellite position in the OB system
We have
Rsin(6+¢) = rsind (2.9)
Differentiating the equation (holding R and r constant) yield
R cos(d + ¢)(do + dp) = rcosd dd (2.10)
Note that when s+ ¢ = y, andd¢ = —dy/r, we have
o =dd = (-b/(rd))dy (2.112)

Similarly for the along-track direction, we have

B =dy = (-(r-dcosd)/(rdcosd)) dx (2.12)



LDCM-ADEF-001
Version 3

For the effect of altitude error, differentiate equation (2.9) with respect to 6 and r (holding ¢ constant)
and noting dr = -dz, we have

o = d§ =(sin 8/d) dz (2.13)

Note that the dx, dy, and dz in equations (2.11) through (2.13) are error terms, which are opposite in
sign to the correction terms. With this in mind, we can replace the correction terms in equation (2.7)
and (2.8) and rewrite the linearized observation equation as:

a = (b/(rd))dy—(sind/d)dz + do, (2.14)

B = ((r-dcosd)/(rd cosd)) dx - do, + tan & doy (2.15)
where:

b = Rcosy = sqrt(R? - (r’sin3)) (2.16)

d =rcosdé-b (2.17)

This formulation does not account for the effects of applying the attitude correction in the ACS/body
frame rather than the orbital frame. This is particularly significant in the case of off-nadir pointing. In
the general case, applying the attitude correction in the ACS coordinate system leads to the following
linearized observation equations:

a = (b/(rd)) dy—(sin8/d)dz+ My db, + M1 d6, + M13 d6y (2.18)
B = ((r-dcosd)/ (rd cosd)) dx + (Ms; tan & - M) do,
+ (M3, tan 6 - M) dep + (M33 tan & - Myg) dey (2.19)
where:

M11, M12, M13, M21, Moo, Moz, M31, M3y, M3z are the elements of the ACS to Orbital rotation matrix
Macszors at the time of the GCP observation. Thus, it is necessary to know the spacecraft roll-
pitch-yaw corresponding to the GCP.

Macs20rB =
cos(p)cos(y)  sin(r)sin(p)cos(y) + cos(r)sin(y) sin(r)sin(y) —cos(r)sin(p) cos(y)
—cos(p)sin(y) cos(r)cos(y) —sin(r)sin(p)sin(y) cos(r)sin(p)sin(y) + sin(r) cos(y)
sin(p) —sin(r) cos(p) cos(r) cos(p)
Note that for nominal nadir viewing M11 = My, = M3z =1 and M2 = M1z = My; = Maz = Mg = M3z =0
and equations (2.18) and (2.19) reduce to equations (2.14) and (2.15).

Both linearized observation equations (2.18) and (2.19) include all three attitude correction terms.

This has the effect of linking the along- and across-track observations in the new OLI formulation,
unlike the heritage implementation which used separate along- and across-track solutions.

3. Weighted Least Squares Solution



LDCM-ADEF-001
Version 3
A weighted least squares solution to the parameters is found using the following steps. The
correction parameters in equations (2.18) and (2.19) can be expanded to include the correction to the
change rates of the satellite attitude and position by defining

Since both the coordinates of the GCP and the measurement of the apparent GCP location in the
image contribute random errors in computing o and B, the covariance matrix for the observation
equations (2.18) and (2.19) should be the sum of the covariance matrix of R¢p in equation (1.6) and
the covariance matrix of Ref in equation (2.1), mapped through equations (1.7), (2.3), and (2.4).

Note that in the observation equations (2.14) / (2.15) and (2.18a) / (2.19a), o is only related to
parameters dy, dz, and d6,, and B is only related to dx, d6,, and d6,. The parameters are uncoupled
in the two observations. In the simplified case where observational error of o and B are uncorrelated,
the observation equations can be separated into two independent equations and solved individually.
In the more general case of equations (2.18) and (2.19) the equations are coupled and must be
solved together. This coupling is, in fact, present due to the yaw offsets introduced by yaw steering.

While it might be tempting to try to circumvent this complication by redefining the orbital coordinate
system to be based on the Earth-rotation corrected ECEF velocity vector (thereby "yaw-steering” the
orbital coordinate system) this would lead to a different set of complications in the application of the
ephemeris corrections. In the baseline algorithm we will adopt the general formulation of equations
(2.18) and (2.19) and have adjusted the heritage separable least squares solution formulation
accordingly.

Proceeding with the integrated formulation, we define the parameter vector as:
X, = {del’01 dep01 deyO, dX01 dy01 dZO1 del’dota depdota deydota dXdOt! dyd0t1 dzdot} (32)
(deleted) (3.3)

where ' means transpose of a vector or matrix. Then, the two observation equations can be written
as:

o = h1 X+e, (3.4)
B = hy X+g (3.5)
where:

h1 = { M1, My, M13, 0.0, b/(d r), -sin S/d,
Ma dt, Ma, dt, Mis dt, 0.0, b dt/(d r), -sin & dt/d} (3.6)

h2 = {(M31 tano - M21), (M32 tano - Mzz), (M33 tano - M23),
(r-dcosd)/(rdcoss), 0.0,0.0,
(M31 tano - le) dt, (M32 tano - Mzz) dt, (M33 tano - M23) dt,
(r - d coso) dt/(r d cosd), 0.0, 0.0} (3.7)



LDCM-ADEF-001
Version 3
with M11, M1z, M13, Mo1, Mo, Moz, M3, M3z, Ma3 the elements of the ACS to Orbital rotation matrix
Macs2org at the time of the GCP observation.

€a and gy are the random error of o and B respectively. With all GCPs included, the along- and across-
track observation equation can be written as:

A=HiX+ea (3.8)

B = HoX +eg (3.9)
and the integrated parameters can be solved by WLS estimation as:

X = (Hy'WaH; + H'WbH,)? (H'WaA + H,’WbB) (3.10)

where A and B are the observation vectors, composed of o and p for all the GCPs, respectively. H;
and H; are corresponding coefficient matrix with h; and h, as rows corresponding to each o and 3,
Wa and Wb are the diagonal weight matrix for A and B respectively, composed of inverse of the
variance of each individual &; and ep,.

4. Parameter Correlation and Covariance Estimation

One problem in this solution is the nearly linear correlation between parameter dx and do, in the
observation equation (3.7). The along-track orbit error and the pitch angle error have the very similar
effect on . The two parameters cannot be well separated in the solution without additional
information — including both parameters in the observation equations results in a near-singular normal
equation and therefore an unstable solution of the parameters. Similarly, high correlation exists
between the cross-track position and the roll attitude errors in equation (3.6) and an ill-conditioned
normal equation would result.

For the purpose of correcting the image, we do not have to distinguish between orbit position
correction and attitude correction parameters. Letting either the orbit or attitude correction parameters
absorb the existing errors will correct the image in a similar manner. Therefore, we can choose to
estimate either dx and dy or d6, and d6,. This can be done by setting those coefficients in h; and h,
corresponding to the unwanted parameters to zero.

One of the challenging tasks is to distinguish satellite attitude error from the orbit positional error. The
purpose of precision correction estimation is not only to correct the image but also to extract
information about the sensor alignment, which is reflected in the attitude correction parameters. In
order to separate the ephemeris error from the attitude error as much as possible, we should first use
the most precise ephemeris data available and correct systematic errors with available models.
Second we should use available a priori information in addition to the observation to cure the ill
condition of the normal equation in statistical estimation.

Let the observation equation be:

Y = HX +¢;
E[e] =0, Cov[e] =s*C (4.1)



LDCM-ADEF-001
Version 3
where Y is the measurement vector, X the parameter vector, H the coefficient matrix and ¢ the
residual error vector, and s? is a covariance scaling factor;
and the a priori information of the parameters be:

X =X+ g,
E[e,] =0, Covle] = q°Cy (4.2)

where X_is the apriori parameter vector, ¢, is the residual vector and g is a covariance scaling
factor;

then the normal equation for the Best Linear Unbiased Estimate (BLUE) X” of the unknown
parameter vector X is:

(ISP )H'WH + (12 )W )XA = (IIS2)H'WY + (I1g%)W,X_ (4.3)
where W and Wy are weight matrices.
w=Ch
Wy = C* (4.4)
The covariance matrix of X" is:
Cov[X"] = ((IISP)H'WH + (Ig%)W,)™* (4.5)
Usually, the Cov[e] and Cov[e] can not be exactly known. In the case of GCP, for example, the
position error involves many factors like base map error, and human marking error, etc... If there are
unknown scale factors s? and g?, we can still obtain the WLS estimate from the normal equation.
(HWH + W)X™ = HWY + WX _ (4.6)
In such case, the inverse of the normal matrix can not be taken directly as the Cov[X"]. Factor s and

> should be estimated with appropriate variance component estimation from the residual of the
solution of equation (4.6). The weighted residual square summation can be calculated as:

VWV = YWY -2 XAM + XA NXA (4.7)
VWiV = XWX = 2 XM WAX + XA W XA (4.8)

where:
V=Y - HX" the measurement residual vector (4.9)
Vy=X_- XA the apriori parameter residual vector (4.10)
N = H'WH (4.11)

M = HWY (4.12)



LDCM-ADEF-001
Version 3

When the factors s* and g° are appropriately estimated, the weight matrix W and W, should be
correspondingly corrected by factors 1/s® and 1/g?, respectively. Equation (4.6) should be resolved
with the new weight matrices. In the new solution, information from the observation and the a priori
information are appropriately combined and the

(H' WH + W,) " is the Cov[X"].

5. Weight Factor Estimation
One of the estimates of s* and ¢ is the Helmert type estimate. For the problem here, the equation for
the estimate can be derived following Helmert's variance component analysis,

Es’+Dqg’= VWV (5.1)

D s? + G g% = VW, Vy (5.2)
where:

E=n-2t{QN}+tr{QNQN;} (5.3)

G =m - 2tr{Q Wy} + tr{Q Wyx Q W} (5.4)

D = tr{Q N Q Wx} (5.5)

Q=(HWH+W)* (5.6)

n = number of observations
m = number of parameters
tr{A} indicates the trace of matrix A

Equation (5.1) and (5.2) do not guarantee positive solution of s> and g%. In some cases, especially for
small s? and g2, noise can drive the solution negative. Another type of estimate, the iterative
Maximum Likelihood Estimate (MLH), guarantees positive solution, though the estimate s and g°
may not be statistically unbiased. The MLH solution is obtained by iteratively solving equation (4.6)
and

s?= VWV /n (5.7)

9% = Vi W, Vy / m (5.8)
W=W/s? (5.9)
Wy = Wy / g° (5.10)

until s> and g converge.



LDCM-ADEF-001
Version 3

The solution above provides the estimate of the corrections to the ephemeris and attitude data as well
as to their covariance matrix. The covariance information can be used as a measure of precision for
assessing the alignment errors of the sensor system. It can also be propagated to any pixel in the
scene to evaluate the pixel location error after the precision correction.

6. Covariance Propagation
Given the sample time and across-track look angle of a pixel, the coefficients h; and h, can be

calculated for oo and B according to equation (3.6) and (3.7). The variance of o and 3 are then
calculated as:

oo’ = hy Cov[X*hy' (6.1)
o’ = hy Cov[X*hy’ (6.2)

These are the variance of the pixel location in sample and line directions due to the uncertainty of the
estimated precision correction parameters. They are in angles but can be easily converted into IFOV
according to the sensor system specifications.

7. Outlier Detection

Ouitlier detection for the precision correction solutions seeks to identify GCPs that are likely to be in
error due to miscorrelation. This is done by analyzing the GCP residuals, taking into account the
relative importance of the GCP as reflected in the precision solution normal equation matrix.

Definitions:
A = matrix of coefficients (partial derivatives) relating parameters to observations
0 = parameter vector
X = observation vector
V = residual vector
C = observation covariance matrix
n = the number of observations
p = the number of parameters
Aisnxp,8ispx1,XandVarenxl,and Cisnxn

Observation Equation:

AD=X-V (7.1)
X=Xyue + E where E = error vector ~ G(0,C) (7.2)
ABtue = Xirve where By is the “true” parameter vector (7.3)
AB = Xie tE-V (7.4)

soV =Eif 0 = Oiue

Minimum Variance Parameter Estimate:
0 =[ATCTAI*ATCX (7.5)

Estimated Residual Error:



LDCM-ADEF-001
Version 3

V' = X - AJATCATTATCIX (7.6)

Define Projection matrix P:
P = A[ATC?A]*ATC? (7.7)
This matrix projects the observation vector into the parameter subspace (the column space of A).
This projection is only orthogonal if C has the special structure described below.

Substituting:
V'=X-PX=[-P]X (7.8)
[I - P] projects X into the parameter null space.

Looking at the Error Estimate V’:
M’ = [I - P]X = [I - P][Xtrue + E] = [I - P]Xtrue + [I - P]E (79)

but [l - P]Xwue = 0 since Xuue lies entirely within the parameter subspace.
soV' =[I-PIE=E-PE (7.10)

Here are some comments about V' and E:
For a given precision solution the elements of E are not random variables, they are realizations of
random variables.
V'’ is an estimate of the actual (realized) error E which includes an estimation error equal to PE.
We cannot exactly recover E from [l - P]*V’ because [l - P] is singular (it is an n x n matrix of rank
n-p).
We can attempt to predict how accurate our estimate (V') of E is likely to be by looking at the
estimation error R = PE.
Since we want the predicted accuracy to apply in general, we treat R as a random vector, which is
a function of another random vector E.
Expected Value: E[R]=E[PE]=PE[E]=PO

=0 (7.11)
Variance: E[RR"]=E[PEE'P'|=PE[EE']P'=

PCP' (7.12)

Special Structure of Observation Covariance Matrix for Precision Correction:
C=4 (7.13)
since the observation errors are realizations of independent and identically distributed zero mean
Gaussian random variables with variance o2.

Substituting (7.13) into equation (7.7) for P yields:
P = A[(1/c)ATIA]*ATI(1/6%) = Ac?[ATA]AT(1/6%) = A[ATA]AT (7.14)

And the equation for the variance of R:
E[RR']=c¢’PIP =6°P (7.15)
notingthat P =Pand PP =P
SOR~G(0,6%°P)

For a particular component of R r;:
E[ri]=0 (7.16)
E[r?]=c"pi (7.17)
Where pj is the i diagonal component of P



LDCM-ADEF-001
Version 3

Looking at the equation for P we see that:
pi = A" [ATATT A (7.18)
Where A is the i row of A

Considering a particular component of the Residual Error Vector V’:
Vi=6€j-Ij (7.19)
Where eg; is the corresponding component of the observation error vector
S0 v; is an unbiased estimate of e; with variance o pj

If we knew what e; was, we could test it against a probability threshold derived from its standard
deviation, o, to determine if it is likely to be an outlier. Instead of e; we have v; which includes the
additional error term r;. Including the additional estimation error in the threshold computation leads to:
o2 = 6% + & pi (7.20)
Where o7 is the term due to the actual error variance and o? pj is the term due to the estimation
error variance.

This may seem like cheating since e; and r; are not independent for a given realization.
E[vP]=E[(ei-r)*]=E[e”-2er+r?] andr =23 pje
E[vi’]=0"(1- pi) (7.21)

It is tempting to use v; / (1 - pi)*2 for e; in the outlier test (or, equivalently, to test v; against a threshold
based on o” (1 - pi)) but this becomes dangerous as p;i approaches 1. The factor pj can be
interpreted as a measure of the uniqueness of, or as the information content of, the i observation. As
pii approaches 1, the i observation lies almost entirely within the parameter subspace, which implies
that it is providing information to the solution that the other observations do not. Note that such
“‘influential” observations can be identified from the structure of the coefficient matrix, A, without
reference to the observation residuals. Attempting to use 1/(1 - pi)Y? to rescale the residual v; to
better approximate e; will, in a sense, punish this observation for being important. Instead, we view pj;
as a measure of how poor an estimate of the actual error, €;, the residual, v;, is and ignore the fact
that v; will tend to be an underestimate of e;. We therefore use o, (= 6° (1 + p;) as shown above) to
construct the outlier detection threshold.

One remaining problem is that we do not know exactly what ¢ is and must estimate it from the
observation residuals. This is done by scaling the a priori observation variance using the variance of
unit weight that was computed in the precision solution. The fact that we are using an estimated
variance to establish our outlier detection threshold modifies the algorithm in two ways: 1) we
compensate for the fact that removing a point as an outlier will alter the computation of the variance
of unit weight by removing one residual and reducing the number of degrees of freedom; and 2) we
base the detection threshold computation on student’s t-distribution rather than the Gaussian
distribution.

The variance of unit weight is computed as:
varg = VICV/(n - p) = V'V/ee’(n - p) = Zvi¥loo’(n - p) (7.22)
Where: n = number of observations,
p = number of parameters, and
002 is the a priori variance.



LDCM-ADEF-001
Version 3
The estimated variance is:
var = varg 6o” = ZviZ/(n - p) (7.23)

Removing the k™ observation makes this:
vare = (ZvZ - vid)I(n-1-p) = (n-p)(n - p-1)* (Zv? - v)/(n - p)
vargy=(n-p)(n-p-1)*var-vZi(n-1-p) (7.24)

To normalize the k™ residual we divide it by the estimated standard deviation o’ = (var)"?:
Wx =V /o (7.25)

We can rescale this normalized residual to reflect the removal of this observation from the variance
estimate without having to actually compute a new variance:
Wi’ = Vi / o’ = Wi o'lor’ = Wi (var/varn)t?
varivarc=1/[(n-p)(n-p-1)-viar(n-p-1)]=(n-p-21)(n-p-vdvar)
varivarc= (n-p - 1)/(n - p - w?)
noting that viZ/var = wy?
Wi = Wi [(n-p - 1N - p - wA)]Y? (7.26)

Finally, we include the (1 + py) factor discussed above and our normalized and reweighted residual
becomes:
Wi = Wi [(n - p - /(L + pud(n - p - wA)]H (7.27)
where: wy=v¢/ o’

This normalized and reweighted residual is compared against a probability threshold computed using
Student’s t-distribution with (n - p) degrees of freedom.

LOS Correction Procedure Overview

The precision correction procedure developed mathematically above is implemented as an iterative
solution to account for the non-linearity of the observation equations presented in (2.5) and (2.6)
above. Each step in the iteration solves the linearized correction problem using equation (3.10)
above, using the current correction estimates, to compute incremental corrections for the current
iteration. These corrections are used to update the current estimates, and the iteration continues until
the incremental corrections are smaller than some threshold (or the iteration limit is exceeded).

An additional layer of iteration is introduced by the need to perform outlier filtering on the input GCP
data. The procedure thus includes two levels of iteration: 1) use the current active set of GCPs to
perform the iterative weighted least squares solution (the linearization iteration); 2) filter the resulting
GCP residuals for outliers, remove those exceeding the specified tolerance, and iterate the weighted
least squares procedure with the new (reduced) active set until no new outliers are found.

The LOS correction procedure can be viewed as a five phase process in which the third and fourth
phases are nested:

a) Phase 1 - Load the necessary data and initialize the solution procedure.

b) Phase 2 - Load and initialize the GCPs. For each GCP, use the geometric grid to compute the
input space (L1R) location and time of observation. Interpolate the spacecraft position,
velocity, and attitude at the time of observation.

c) Phase 3 - Use the current active set of GCPs to form and solve the linearized weighted least
squares equation. Use the computed corrections to update the current estimates. Iterate the



LDCM-ADEF-001
Version 3
linearized solution procedure until the incremental corrections are below the convergence
threshold. Compute and write residuals for each iteration (the initial pre-correction and final
iteration residuals are both used in geodetic accuracy assessment). Note that the residuals file
is reinitialized at the beginning of each phase 4 loop so that the output residual file will reflect
only the final pass through the outlier detection loop (phase 4).

d) Phase 4 - Run the outlier detection and removal iteration loop using the results of the iterative
weighted least squares solution procedure (phase 3) by testing the resulting residuals for
outliers. Remove any newly detected outliers from the active GCP list and recompute the
phase 3 solution with the reduced GCP set. Continue to iterate until no new outliers are
detected.

e) Phase 5 - Write the precision solution file to document the final result, update the LOS model,
and, if requested, convert the attitude corrections to OLI alignment angles and write the
resulting alignment calibration information to the characterization database.

Figure 3 shows a block diagram of the LOS correction procedure in which the individual process
steps are identified by phase using the codes P1 through P5.



LDCM-ADEF-001

Version 3
: P1
ODL Retrieve Parameters
v
/116 /| GetL1G Metadata™| »[  GetLOS Model 7%
¥ 7 Model
Read GCP Get Geometric Grid" ] -
| Correlation Results e Grid
v =% Calculate ILS from ©3
Get GCP Heights GCP OLS
v v -
Get Satellite Positionpz‘_ Get ILS Position & y
& Velocity Time
* ~
.P3/4 > s . P4 P3
Calculate Correction | —p| Initialize Residuals Calculate ECF to ORB
Precision v v v =
P5
LOS ' fe— Update LOS Model > Initialize Precision 7 Calculate LOS
Model 3 5 s :
Write Precision '] Process One GCP "3 Relate Observable P
Solution 7 <] to Correction
¥ Write Iteration  P3
Solution v
Solve for Corrections':3 3
v _ v
Update Observation® iResiduaIs /
Angles 7y
v
P3
—| Check Convergence
# '
Write Final Residuald
v

Remove GCP Outlierg4

Figure 3: LOS Correction Algorithm Block Diagram

We next examine the individual process steps in the prototype LOS correction procedure.

7.2.3.7 Prototype Code

Inputs to the executable are an ODL parameter file, an ASCIl GCP measurement file created by the
GCP correlation algorithm, the L1G image used to measure the GCPs, the OLI LOS model used to
create the L1G image, the LOS projection grid file used to create the L1G image, the calibration
parameter file used to create the L1G image, and the DEM file (if any) used to terrain correct the L1G
image. Note that only the L1G image metadata is used, not the imagery itself. The outputs are an
updated (precision corrected) OLI LOS model file, an ASCII report file containing a standard header
that identifies the data set analyzed, and the results of the precision correction solution, and an ASCII
file containing the computed GCP residual errors at each iteration of the solution. The GCP residuals
for the first and last iteration are subsequently used by the geodetic accuracy characterization



LDCM-ADEF-001
Version 3
algorithm. The prototype implementation also includes an option to generate trending data which,
rather than being stored in a database, is written to the standard output in a comma-delimited format.

The prototype code accesses two environment variables to populate fields used in the standard
report header. These are IAS_REL which contains the IAS software version number, and IAS_SITE
which contains a text string identifying the processing center.

The prototype code was compiled with the following options when creating the test data files:
-g -Wall -march=nocona -m32

Get Precision Parameters (get_prec_par)
This function gets the precision correction algorithm parameters.

Read Precision Parameters (read_prec_parm)
This function reads all the parameters from ODL and CPF files that precision requires.

Get Position (get_position)
This function finds the satellite position, velocity, attitude and reference time for each GCP.

Add Position (add_position)
This function adds the position to the ground control point structure and assigns the reference
time to the time structure using the following steps.

1. From the 1G line and sample, find the latitude and longitude, and use the DEM to find the height at
that line/sample (new for LDCM); then transform to earth fixed.

2. From the L1G line and sample use the geometric grid and the ols2ils routine (reference the LOS
Projection ADD) to compute the corresponding input space line and sample. Note that this
computation includes the DEM height interpolated in step 1 above, which is new for LDCM.

3. From the input space line and sample calculate the reference year, day, and seconds, satellite
position and velocity, and spacecraft attitude (roll-pitch-yaw). Note that the inclusion of roll-pitch-
yaw here is new for LDCM.

Calculate the transformation matrix from earth fixed to orbit oriented.
Calculate the line of sight.

ok~

Calculate Position (oli_calc_position)

This function finds the satellite position, velocity, attitude, and time using the forward model.
This unit invokes oli_findtime to get the time, oli_findatt to get the attitude, and I8_movesat to
compute position and velocity. These sub-algorithms are described in the OLI LOS Projection
ADD.

Get Latitude/Longitude (getlatlong)
This function finds the latitude/longitude given the L1G line/sample.
1. Find first order rotation coefficients if there is a rotation.
2. Find output projection coordinate of pixel.
3. Call projtran routine (see the LOS Projection ADD for details) to convert projection X/Y
coordinates to the corresponding latitude/longitude.



LDCM-ADEF-001
Version 3
4. Access the DEM to interpolate the height at the L1G line/sample coordinates. Note that this is a
departure from the ALIAS heritage approach and is a consequence of using terrain corrected
mensuration images.
5. Convert the latitude, longitude, and height into Cartesian ECEF coordinates (x,y,z) as described
below.

Geodetic to Cartesian (geo_geod2cart)

This function converts geodetic coordinates (lat, lon, height) into Cartesian coordinates (X,
y, z) as described in the LOS Projection ADD and reiterated below. Input latitude and
longitude are in radians, height, semi-major axis, and output Cartesian position vector are
in meters; flattening is a dimensionless number.

b=a(l-f)
e?=1-b?*/a?
N=al/(l-e?sin’(p))*?
X = (N + h) cos(¢) cos(A)
Y = (N + h) cos(¢e) sin(A)
Z = (N (1-€%) + h) sin(¢)

where:
XY, Z - ECEF coordinates
@, A h - Geodetic coordinates (lat ¢, long A, height h)
N - Ellipsoid radius of curvature in the prime vertical
f - Ellipsoid flattening (f = 1 - b/a)
e? - Ellipsoid eccentricity squared
a,b - Ellipsoid semi-major and semi-minor axes

Calculate Line of Sight (calc_line_of_sight)
This function calculates the line-of-sight angles from the satellite position to the ground point
from their position coordinates.

For X, y, and z, assign: ecf_look = pixpos - satpos.
Perform matrix multiplication to transform earth fixed look vector to orbit oriented look vector (see the
Earth Fixed to Orbit Oriented sub-algorithm below for the construction of the Tecf2o00 transformation
matrix):

[Tecf200]3xs [ecf_look]sx = [00_lo0K]3x1

Compute the along- and across-track angles:

psi = arctan(oo_look[0] / oo_look[2])
delta = arctan(oo_look[1] / oo_look[2])

Calculate Correction (calc_correction)
This function solves for the attitude and/or ephemeris correction using the Ground Control Points.

1. Initialize the correction parameter structure.
2. Allocate memory for residuals structure.



Nookow

LDCM-ADEF-001
Version 3

Begin the outlier detection and rejection iteration loop.
Prepare the residual file to be written to.

Reset the GCP information to its original state.

Initialize weight factor for observation and a priori parameters.
Iterate the precision correction solution process.

a)
b)

c)
d)
e)
f)
9)

h)
)
)

Initialize the normal equations.
For each GCP compute the observables (o and B), relate them to the correction parameters,
and then form the normal equation to accumulate.
Accumulate the normal equations by adding up information from each GCP.
compute diff_time = gcps[gcp_num].time - ref_time[2]
Write the residual information for this iteration. This will be done for each iteration. The
structure get_residuals must be filled before writing to this file. We store the RMS residuals for
the first and last iteration as solution quality metrics.
Solve the Normal equations. Solve for the corrections from the normal equation using the
Weighted Least Square sub-algorithm.
If the parameter flag is 4 (weight factor estimation option):

1. Estimate the variance factor with Minimum Norm Quadratic Unbiased Estimate

(MINQUE).

2. If MINQUE solution is obtained, compute the residual square sum.

3. If MINQUE solution failed Try Maximum Likelihood Estimate (MLHE) solution.

4. If MLHE fails, the solution can not be obtained.

5. Calculate the posteriori standard error.
Else If the parameter flag is not 4 (no a priori weight factor estimation is used):

1. Compute the residual square sum.

2. Calculate the posteriori standard error.
Update the total correction estimate.
Update the observable and orbit state for each GCP.
If the sum of the absolute values of the elements of the across-track and along-track solution
vectors are greater than 1 and the number of iterations is less than max iterations, iterate
again, otherwise end iteration.

8. Calculate the residual in alpha and beta for each GCP.

9. Check the residuals for new outliers, if any are found continue the outlier iteration loop from step 3
above.

10. Extract the final solution and update the correction parameters.

11.Free memory.

Write Residuals (write_residuals)
This function writes out the residual for along- and across-track components for each GCP to the
residual file.

For each GCP:

Rescale residuals to meters.
Compute the projection space value of the residuals.
Copy the information to the residual structure.

Werite out the residual information.

Get Ground (get_ground)
This function calculates the projection (x/y) residual values in meters from the earth orbit delta
and psi residual values.



LDCM-ADEF-001
Version 3

1. Calculate the Earth Centered Fixed (ECF) to Orbit Oriented (OO) transformation system and
transpose the matrix to get the OO to ECF matrix.

Given the satellite position and correction terms, calculate a new look vector.

Transform the vector from OO to ECF.

Convert the ECF latitude and longitude to projection in meters.

Convert the true latitude and longitude to projection in meters.

Subtract the projection and assign to residual.

ok wn

Earth-fixed to Orbit-oriented (xxx_earth2orbit)

This function generates the transformation matrix from the Earth-fixed cartesian system to
the orbit-oriented cartesian system as described in the Ancillary Data Preprocessing ADD
and reiterated below. Note that the ECEF velocity vector is really the ECI velocity vector
rotated into the ECEF coordinate system (i.e., it is still an inertial velocity) and does not
include the relative Earth rotation velocity. This is done so that the ECEF velocity vector
remains parallel to the attitude control reference X axis, which is defined in ECI
coordinates.

The relationship between the orbital and Earth Centered coordinate systems is based on
the spacecraft's instantaneous ECEF position and velocity vectors. The rotation matrix to
convert from orbital to ECEF can be constructed by forming the orbital coordinate system
axes in ECEF coordinates:

N
n= P
N
p
- -
nx v
- - =
nx v
- e
cv=hxn

[ORBzEc]z[cT/ h ﬁ}

where:
p = spacecraft position vector in ECEF
v = spacecraft velocity vector in ECEF
n = nadir vector direction
h = negative of angular momentum vector direction
cv = circular velocity vector direction
[ORB2ECEF] = rotation matrix from orbital to ECEF

The transformation from orbital to ECEF coordinates is the inverse of the ECEF to orbital
transformation matrix. Since the ECEF to orbital matrix is orthogonal the inverse is also
equal to the transpose of the matrix.



LDCM-ADEF-001
Version 3

[ORB2ECEF|=[ECEF20RB]| " = [ECEF20RB[

Detect Outliers (det_outliers)
This function detects GCP outliers using the residuals and normal equations. Given a tolerance
value, outliers are removed within the data set until all values deemed as “non-outliers” or “valid”
fall inside the confidence interval of a T-distribution. The tolerance, or associated confidence
interval, is specified per run and usually lies between 0.9-0.99. The default value is 0.95. The
number of degrees of freedom of the data set is equal to the number of valid data points minus
one. The steps involved in this outlier procedure are as follows:
1. Calculate standard deviation of all valid points in the data set.
2. Loop on “valid” data points until no outliers are found.
a) Find two tailed T-distribution (T) value for current degree of freedom and confidence
level specified a.
b) Calculate largest deviation allowable for the specified degree of freedom and a. This is
not scaled by o since the residuals themselves are normalized by o in step ¢ below.
A=T
c) For each data point, compute the along- and across-track weight factors using equation
(7.18) above and the normalized and weighted along- and across-track residuals using
equation (7.27) above.
d) Find the data point with the largest normalized and weighted residual.
e) If maximum residual value found in step d is less than A, then exit
f) If value found in step d is greater than A, then flag the data point as an outlier and
calculate the standard deviation of the new set of “valid” data points.

Get Correction (get_correction)

This function extracts the estimated correction parameters and their covariance matrix from the
Weighted Least Square solution, update the correction parameter structure.

Record the reference time for the correction.

Extract satellite position corrections

Extract satellite velocity corrections

Extract satellite attitude angle corrections

Extract satellite attitude angle rate corrections

Record the covariance matrix for the correction parameters

ocoarwNE

Reset Observations (resetobserv)
This function resets the satellite state vector and the look angles corresponding to each GCP to
their original values. This resets the inputs for the next iteration of the outlier loop.

Initialize Precision (initial_precision)
This function initializes the normal matrix for attitude and ephemeris correction estimate by least-
square solutions.

1. Initialize the observational and a priori part of the normal equation, obs_mx, obs_rgt, apr_corr,
apr_wgt_par, to zero or almost zero.

2. if param_flag = both or input weights are provided, estimate all corrections.

3. Form the a priori normal matrix for the parameters.

4. Form the a priori right-side term for the parameters.



LDCM-ADEF-001
Version 3

5. Subtract the current net correction (Yb) terms from the right hand side to restrain the magnitude of the
net correction.
6. if param_flag = eph_yaw, estimate orbit corrections:
a) set zero a priori mean for roll
b) set zero a priori mean for roll dot
c) set huge a priori weight for roll
d) set huge a priori weight for roll dot
e) set zero a priori mean for pitch
f) set zero a priori mean for pitch dot
g) set huge a priori weight for pitch
h) set huge a priori weight for pitch dot
7. if param_flag = att_orb, estimate attitude corrections:
a) set zero a priori mean for dy
b) set zero a priori mean for dy dot
c) set huge a priori weight for dy
d) set huge a priori weight for dy dot
e) set zero a priori mean for dx
f) set zero a priori mean for dx dot
g) set huge a priori weight for dx
h) set huge a priori weight for dx dot
8. iftime_flag = FALSE
a) Block out the rate terms by setting a huge weight for zero apriori mean.
9. Initialize the number of observations.
10. Initialize weighted residual square summation.

Process One GCP (process_one_gcp)
This function updates the normal equation of the least-square problem for correction solution by
adding one Ground Control Point.

Calculate the transformation matrix from ECF to Orbit system
Calculate the line-of-sight angles for GCP

Note: The look vectors here should be in the Orbit reference system.

If the line of sight angle for the pixel P; is from the forward model (in the spacecraft-fixed system), then it
should be transformed into the Orbit reference system (through matrix A(roll, pitch, yaw)) first before the
observable alpha and beta can be formed.

Compute the observable alpha and beta

If not an outlier:
Relate the observable to correction parameters
Update the weighted square summation of observation
Accumulate the normal equation contribution for alpha
Accumulate the normal equation contribution for beta

Partial (partial)
This function composes the partial coefficients matrix of the observation equation, given the
angle delta for one GCP.



LDCM-ADEF-001
Version 3
Partial Attitude (partial_att)
This function composes the partial coefficients matrix of the observation equation for
param_flag = "att_orb", estimating attitude plus height corrections.

Calculate the constants needed for the partial derivative (H) matrix calculation such as sin(delta),
cos(delta), and satellite radius.
The side perpendicular to the look vector = satellite_radius * sindelta
Compose the H matrix by finding:

alpha w.r.t roll, microradian

alpha w.r.t pitch, microradian

alpha w.r.t yaw, microradian

alpha w.r.t. dz, meter scaled to microradian

beta w.r.t roll, microradian

beta w.r.t. pitch, microradian

beta w.r.t. yaw, microradian

Partial Ephemeris (partial_eph)
This function composes the partial coefficients matrix of the observation equation for
param_flag = "eph_yaw", estimating ephemeris plus yaw corrections.

Calculate the constants needed for H calculation by assigning sin(delta), cos(delta) and satellite
radius.
Compose the H matrix by finding:

alpha w.r.t. dy, meter scaled to microradian

alpha w.r.t. dz, meter scaled to microradian

alpha w.r.t. yaw, microradian

beta w.r.t. dx, meter scaled to microradian

beta w.r.t. yaw, microradian

Partial All (partial_all)

This function composes the partial coefficients matrix of the observation equation for
param_flag = "both" or "weight", estimating both attitude and ephemeris corrections. Note
that this is the normal case.

Calculate the constants needed for H calculation sin(delta), cos(delta), and satellite radius (see
equations (3.6) and (3.7) above).
Compose the H matrix:
alpha w.r.t. roll, microradian
alpha w.r.t. pitch, microradian
alpha w.r.t. yaw, microradian
alpha w.r.t. dy, meter scaled to microradian
alpha w.r.t. dz, meter scaled to microradian
beta w.r.t. dx, meter scaled to microradian
beta w.r.t. roll, microradian
beta w.r.t. pitch, microradian
beta w.r.t. yaw, microradian

Accumulate Normal Equation (accum_normal_equation)



LDCM-ADEF-001
Version 3
This function accumulates the normal equation of the least-square problem by adding one
observation.

Update the n x n normal matrix by accumulating:
H_transpose * wo * H

Update the n x 1 right-hand-side array of the normal equation by adding:
H_transpose * wo * obs

where:
H is the matrix of partial derivatives
wo is the observation weight
obs is the observation value

Weighted Least Square (weighted_least_square)
This function solves the weighted least square problem with nxn normal matrix.

Form the normal equation for the Weighted Least Square (WLS) problem, including any weight factors:
A[i][j] = weight_factor_for_observation * normal_matrix_for_observation[i][j]

Augment the diagonal terms using the apriori observations:
A[i][i] += weight_factor_for_apriori * normal_matrix_for_apriori[i]

Form the constant vector including both observations and apriori contributions:
L[i] = weight_factor_for_observation * observation_rhs[i]
+ weight_factor_for_apriori * apr_corr[i]

Solve the equation:
solution =sol_Ya=A"L

Note that the inverted normal equation matrix (A™) is returned along with the solution so that it can be used
to construct the solution aposteriori covariance matrix.

MINQUE (minque)
This function estimates the variance factor with MINQUE (Minimum Norm Quadratic Unbiased
Estimate).

let:

wght _rss_obs = weighted residual square for observation
cov_mx = Inverse of the WLS problem normal matrix
obs_mx = the observation part of the normal matrix

apr_wgt_par = the a priori weights loaded into a diagonal weight matrix
wgt_fact_obs = the estimated variance factor for the observation
wgt_fact_apr = the estimated variance factor for the a priori variance
compute the weighted residual square for the observation (rss_obs)

compute the weighted residual square for the a priori parameters (rss_apr)

Allocate memory for arrays



LDCM-ADEF-001
Version 3

compute the trace coefficients for the weight estimate equation
CC2 = cov_mx * apr_wgt_par
ccl = cov_mx * obs_mx

sl =ngcp - 2tr[ccl] + tr[ccl * ccl] ref. equation (5.3)
s2 = n_aprior - 2tr[cc2] + tr[cc2 * cc2] ref. equation (5.4)
s12 =tr[ccl * cc2] ref. equation (5.5)

solve for the weight factors:
ssl=s1*s2-s12 *s12
wgt_fact_obs = (rss_obs * s2 - rss_apr * s12) / ssl
wgt_fact_apr = (rss_apr * sl - rss_obs * s12) / ss1

If wgt_fact_obs and wgt_fact_apr are less than 0.0--return, minque failed.

Run WLS where the scale factor for the weight of observation and a priori are 1/wgt_fact_obs and
1/wgt_fact_apr respectively.

If WLS fails, return minque with failed status.

If WLS returns a non-error value, assign wght_rss_obs.

Residual Square Sum (resquare)
This function computes the residual square sum by adding the dot product of:
sol_Ya' * obs_mx * sol_Ya - 2 * obs_rgt' * sol_Ya
where:
sol_Ya is the weighted least squares solution vector
obs_mx is the normal equation matrix
obs_rgt is the right hand side vector of the normal equations

to the observation square sum (post_sig).

MLHE (mlhe)
This function estimates the variance factor with MLHE (Maximum Likelihood Estimate).

Initialize the weight factor to zero.

Iterate the estimation of the weight factors.

Compute the weighted residual square for the observation and for the apriori parameters.
Compute the weight factor estimate.

Compute the weight factor difference for this iteration.

Solve the new WLS solution with the new weight factors.

Compute the final variance factor estimate.

New Observation Angle (new_observ_angle)
This function updates the satellite state vector and the look angles corresponding to each GCP,
according to the correction parameters, for the purpose of iteration.

Extract the orbit and attitude correction parameters from the solution vectors.
Orbit corrections:

dorbit[0] = sol_Ya[3]
dorbit[1] = sol_Ya[4]



LDCM-ADEF-001
Version 3
dorbit[2] = sol_Ya[5]
orbit_rate[0] = sol_Ya[9]
orbit_rate[1] = sol_Ya[10]
orbit_rate[2] = sol_Ya[11]

Attitude corrections:
datt[0] = sol_Ya[0]
datt[1] = sol_Ya[1]
datt[2] = sol_Ya[2]
att_rate[0] = sol_Ya[6]
att_rate[1] = sol_Ya[7]
att_rate[2] = sol_Ya[8]

For each GCP
Calculate the orbit perturbation and update the orbit state vector
Calculate the attitude perturbation and update the look angles

Update Ephemeris (update_eph)
This function calculates the orbit position change and updates the ephemeris data in Earth
Fixed system.

Construct the ECF to orbital transformation Teso0 from the input position and velocity vectors
(using xxx_earth2orbit).

Take the transpose of (the orthogonal matrix) Tefoo t0O find the inverse Topoet.
Transform the input orbital position and velocity corrections to ECF using Too2ef.

Update the input ECF position and velocity by adding the transformed position and velocity
corrections.

Calculate New Look Angles (newlook)

This function calculates the new look angles by adding the attitude angle perturbation. The
heritage ALIAS implementation was modified as described below to account for applying the
attitude corrections in the ACS rather than the orbital coordinate system.

Convert the units of the attitude corrections (to radians).
Construct the look vector from the two look angles.

look_vector[0] = tan(psi)
look_vector[1] = tan(delta)
look_vector[2] = 1.0

Convert the orbital look vector to the ACS coordinate system:
Use the roll-pitch-yaw values for this GCP to construct the orbital to ACS rotation matrix

— T
MORBZACS - [MACSZORB] .
Where: MACSZORB =



LDCM-ADEF-001
Version 3

cos(p)cos(y)  sin(r)sin(p) cos(y) + cos(r)sin(y) sin(r)sin(y) — cos(r)sin(p) cos(y)
—cos(p)sin(y) cos(r)cos(y) —sin(r)sin(p)sin(y) cos(r)sin(p)sin(y) + sin(r) cos(y)
sin(p) —sin(r) cos(p) cos(r) cos(p)

Convert look_vector to ACS_look_vector by multiplying it by [Macszore]
ACS_look_vector = [Macszorg] " 100k _vector

Use the attitude corrections to construct the ACS correction rotation matrix Mprecision:
8. Compute the precision correction at the time (t_att = att_seconds + att_time)
corresponding to the attitude sample:
a. roll_corr =roll_bias + roll_rate * (t_att —t_ref — image_seconds)
b. pitch_corr = pitch_bias + pitch_rate * (t_att — t_ref — image_seconds)
c. yaw_corr = yaw_bias + yaw_rate * (t_att —t_ref — image_seconds)
Note that only the seconds of day fields are needed for the attitude and image
epochs as they are constrained to be based on the same year and day.
9. Compute the rotation matrix corresponding to roll_corr, pitch_corr, and yaw_corr
(Mprecision) USing the same equations used for Macs2ors above.

Apply the attitude corrections to the look vector by multiplying by Mprecision:
ACS_pert_look_vector = Mprecision ACS_look_vector

Rotate line of sight back to the orbital coordinate system using the transpose of the Mogrg2acs matrix,
which is the same as Macs2org:
pert_look_vector = Macs2ors ACS_pert_look vector

Note that this can be achieved with a single rotation of:

_ T
Mcorr = Macs20rs Mprecision [Macs20re]
pert_look_vector = Mo l0OK_vector

Calculate the new look angles:
psi = arctan(pert_look_vector[0]/pert_look _vector[2])
delta = arctan(pert_look_vector[1]/pert_look_vector[2])

Calculate Observation Residual (observation_residual)
This function corrects the final values of alpha and beta for all GCPs for the effects of the final
solution iteration. These values are updated by process_one_gcp for all but the final iteration.

For each GCP
Calculate the full partial coefficients matrix for alpha and beta.
For all 6 elements
Calculate the residual for alpha by subtracting the calculated observation.
gcps.va = geps.va - H1 *Ya
Calculate the residual for beta by substracting the calculated observation.
gcps.vb = geps.vb - H2 *Ya
Where Ya is the vector containing the incremental parameter corrections for the last iteration.



LDCM-ADEF-001
Version 3
Finish Processing (finish_processing)
This function updates the OLI model file and writes to the solution and residual files. It has new
functions added to check the solution quality statistics (pre-fit RMS, post-fit RMS, outlier percent,
number of valid GCPs) to determine if the solution was successful.

Compute the percentage of GCPs that were declared outliers:
percent_outlier = num_outlier / num_GCP * 100
Compute the number of valid GCPs:
num_valid = num_GCP — num_outlier
Check the pre-fit RMS, post-fit RMS, percent_outlier, and num_valid metrics against the thresholds (maximum
pre-fit RMS, maximum post-fit RMS, maximum outlier percentage, minimum number of valid GCPs) from the
CPF.
If the pre- and post-fit RMS values are both below the thresholds, and either the percent_outlier metric is below
threshold or the num_valid metric is above threshold:
Update the model to make a precision model.
Fill the gcp_solution structure with the appropriate values.
Write to the solution file.
Return success status.
Else return failure status.

Update LOS Model (oli_update_model)

This function updates the LOS model file with the precision correction values. The LOS model will be
read from the LOS model file, the new precision correction values will be placed in the LOS model
structure, the LOS model will be processed with the new precision correction values, and the new
precision LOS model structure will be output to the precision LOS model file.

Unlike the heritage ALIAS approach, not only are the precision correction parameters stored in the
LOS model, they are also applied to both the ephemeris and attitude data sequences. This is
captured in the LOS model by storing both original and corrected attitude and ephemeris data
sequence. This update procedure operates as follows:

Correct Attitude Sub-Algorithm (I8 _correct_attitude)

This function applies the ACS/body space attitude corrections computed by the LOS/precision
correction procedure to the attitude data sequence. It outputs a parallel table of roll-pitch-yaw
values with the precision corrections applied. This "corrected" table is created by the LOS Model
Creation algorithm but initially it is identical to the original attitude data sequence.

The sequence of transformations required to convert a line-of-sight in the OLI instrument
coordinate system, generated using the Legendre polynomials, is:

Xecer = More2ecer Macs20re Mprecision MoLizacs Xol

where: Xou IS the Legendre-derived instrument LOS vector
MoLizacs IS the OLI to ACS alignment matrix from the CPF
Merecision IS the correction to the attitude data computed by the LOS/precision
correction procedure
Macszors iS the spacecratft attitude (roll-pitch-yaw)
Morszecer IS the orbital to ECEF transformation computed using the ECEF
ephemeris



LDCM-ADEF-001
Version 3
Xecer IS the LOS vector in ECEF coordinates

Note that in the heritage ALIAS implementation the sequence was:

Xecer = More2ecer Mprecision Macs20ore MoLizacs Xol

For nadir-viewing imagery the Macs2ors matrix is nearly identity, so there is little difference. Since
OLI will occasionally be viewing off-nadir and it is more natural to model attitude errors in the
ACS/body coordinate system, the order has been reversed for LDCM. The impact is minimal in
the model and LOS projection but becomes more important for the LOS/precision correction
algorithm.

This new sub-algorithm pre-computes the Macs2ors Mprecision COMbination and stores the
corresponding corrected roll-pitch-yaw attitude sequence in the model structure. This approach
has several advantages:

4. It streamlines the application of the model for LOS projection by removing the step of explicitly
applying the precision correction.

5. It allows for the use of a more complex correction model in the future since the application of
the model is limited to this unit. Note that the Earth-view attitude correction model consists of
the following model parameters:

Precision reference time: t_ref in seconds from the image epoch (nominally near the
center of the image time window)
Roll bias and rate corrections: roll_bias, roll_rate
Pitch bias and rate corrections: pitch_bias, pitch_rate
Yaw bias and rate corrections: yaw_bias, yaw_rate
This model is dealt with in more detail in the line-of-sight correction algorithm description.

6. Retaining both the original and corrected attitude sequences in the model make the model self-
contained and will make it unnecessary for the LOS/precision correction algorithm to access
the preprocessed ancillary data.

The disadvantage is that it doubles the size of the attitude data in the model structure.

The construction of the corrected attitude sequence proceeds as follows:
For each point in the attitude sequence j = 0 to K-1.:
1. Compute the rotation matrix corresponding to the j™ roll-pitch-yaw values:

Macszors =
cos(p)cos(y) sin(r)sin(p)cos(y) + cos(r)sin(y) sin(r)sin(y) —cos(r)sin(p) cos(y)
—cos(p)sin(y) cos(r)cos(y) —sin(r)sin(p)sin(y) cos(r)sin(p)sin(y) + sin(r)cos(y)
sin(p) —sin(r) cos(p) cos(r) cos(p)
2. Compute the precision correction at the time (t_att = att_seconds + att_time(j)) corresponding
to the attitude sample:
a. roll_corr =roll_bias + roll_rate * (t_att —t_ref — image_seconds)
b. pitch_corr = pitch_bias + pitch_rate * (t_att — t_ref — image_seconds)
Cc. yaw_corr = yaw_bias + yaw_rate * (t_att —t_ref — image_seconds)
Note that only the seconds of day fields are needed for the attitude and image epochs as they
are constrained to be based on the same year and day.
3. Compute the rotation matrix corresponding to roll_corr, pitch_corr, and yaw_corr (Mprecision)
using the same equations presented in step 1 above.
4. Compute the composite rotation matrix: M = Macs20rs Mprecision



LDCM-ADEF-001
Version 3
5. Compute the composite roll-pitch-yaw values:

M
roll'= —tan‘l[ij
MZ,Z

pitch'=sin"*(M, , )

M
yaw'= —tanl( = }
MO,O

6. Store the composite roll’-pitch’-yaw’ values in the j" row of the corrected attitude data table.

Correct Ephemeris Sub-Algorithm (I8_convert_ephem)

The heritage ALIAS function converted the ephemeris information (position and velocity) from the
Earth Centered Inertial (ECI J2000) system to the Earth Centered Earth Fixed (ECEF) system and
applied the ephemeris corrections computed in the LOS/precision correction procedure to both
ephemeris sets. Since both ECI and ECEF representations of the ephemeris are now provided by
the ancillary data preprocessing algorithm, the first portion of the heritage algorithm is no longer
necessary.

The precision correction parameters are stored in the LOS model in the spacecraft orbital
coordinate system as three position (x_bias, y_bias, z_bias) corrections and three velocity (x_rate,
y_rate, z_rate) corrections that, like the attitude corrections, are relative to t_ref. These values
must be converted to the ECEF and ECI coordinate systems. Once the precision correction is
determined in the ECEF/ECI coordinate system, the ECEF/ECI ephemeris values can be updated
with the precision parameters.

Loop on LOS model ephemeris points j = 0 to N-1
Compute the precision correction:

Calculate delta time for precision correction:
dtime = ephem_seconds + ephem_time(j) — t_ref —image_seconds

Calculate the change in X, Y, Z due to precision correction. Corrections are in terms of
spacecraft orbital coordinates.

dx orb = model precision x_bias + model precision x_rate * dtime
dy orb = model precision y_bias + model precision y_rate * dtime
dz orb = model precision z_bias + model precision z_rate * dtime

where:

model precision x_bias = precision (orbital coord sys) update to X position
model precision y_bias = precision (orbital coord sys) update to Y position
model precision z_bias = precision (orbital coord sys) update to Z position
model precision x_rate = precision (orbital coord sys) update to X velocity
model precision y_rate = precision (orbital coord sys) update to Y velocity
model precision z_rate = precision (orbital coord sys) update to Z velocity

Construct precision position and velocity “delta” vectors.



LDCM-ADEF-001
Version 3

dx orb
[dorb] =| dy orb
dz orb
model precision x rate
[dvorb]=| model precision y rate
model precision z rate

Calculate the orbit to ECF transformation [ORB2ECEF] using ECEF ephemeris (See the
ancillary data preprocessing ADD for this procedure).

Transform precision “delta” vectors to ECEF.

[def | = [ORB2ECEF [dorb]

[dvef | = [ORB2ECEF[dvorb]

Adjust ECEF ephemeris by the appropriate “delta” precision vector and store the new
ephemeris in the model. These ephemeris points will be used when transforming an input
line/sample to an output projection line/sample.

model ef postion= ephemeris ecef postion+ decf

model ef velocity = ephemeris ecef velocity + dvecf

where:
All parameters are 3x1 vectors
ephemeris ecef values are the interpolated one-second ephemeris values in
ECEF coordinates

Calculate the orbit to ECI transformation [ORB2ECI] using ECI ephemeris.
Transform precision “delta” vectors to ECI.

[deci | = [ORB2ECI]dorb]

[dveci]= [ORB2ECI ]dvorb]

Adjust ECI ephemeris by the appropriate “delta” precision vector and store the new ephemeris
in the model. These ephemeris points will be used with lunar/stellar observations.

model eci postion = ephemeris eci postion-+ deci

model eci velocity = ephemeris eci velocity + dveci

where:
All parameters are 3x1 vectors



LDCM-ADEF-001
Version 3
ephemeris eci values are the interpolated one-second ECI ephemeris

Convert the Net Attitude Corrections to Alignment Angles (calc_alignment)
This new sub-algorithm combines the newly computed attitude correction with the OLI sensor
alignment matrix from the LOS model to construct corrected alignment angles.

Compute the precision correction at the reference time t_ref:
roll_corr = roll_bias
pitch_corr = pitch_bias
yaw_corr = yaw_bias

Compute the rotation matrix corresponding to roll_corr, pitch_corr, and yaw_corr (Mprecision) USIiNg the
standard rotation matrix equations:

Mprecision =
cos(p)cos(y) sin(r)sin(p)cos(y) + cos(r)sin(y) sin(r)sin(y) —cos(r)sin(p)cos(y)
—cos(p)sin(y) cos(r)cos(y) —sin(r)sin(p)sin(y) cos(r)sin(p)sin(y) + sin(r) cos(y)
sin(p) —sin(r) cos(p) cos(r) cos(p)

Extract the ACS to OLI alignment matrix, Macs2owi, from the OLI LOS model, and take the transpose
to compute Moy 2acs-

Compute the composite alignment matrix: M = Mprecision MoLizacs

Compute the composite roll-pitch-yaw alignment angles:

M
roll'= —tan‘l[i
M

2,2

pitch'=sin*(M,,)

M
yaw'= —tanl( 10 }
MO,O

Extract the orbital ephemeris biases from the precision solution: (x_bias, y_bias, z_bias).

Extract the attitude bias correction and ephemeris bias correction covariance terms from the precision
solution covariance matrix:



The solution provides:

droll
dpitch
dyaw
dX
dy
dz
droll / dt
dpitch / dt
dyaw / dt
dX /dt
dy /dt

dZ /dt

We want to form:

With (see note #2): CovX =

The covariance matrix captures the correlations between the attitude and ephemeris correction

dpitch

droll |

dyaw
dX
dy
dz

with covariance Cov

[ Cov[0][0]
Cov[1][0]
Cov[2][0]
Cov[3][0]
Cov[4][0]

| Cov[5][0]

parameters (e.g., roll-Y and pitch-X).

Cov[O][1]
Cov[1][1]
Cov[2][1]
Cov[3][1]
Cov[4][1]
Cov[5][1]

Cov[0][2]
Cov[1][2]
Cov[2][2]
Cov[3][2]
Cov[4][2]
Cov[5][2]

Cov[0][3]
Cov[1][3]
Cov[2][3]
Cov[3][3]
Cov[4][3]
Cov[5][3]

Cov[0][4]
Cov[1][4]
Cov[2][4]
Cov[3][4]
Cov[4][4]
Cov[5][4]

The following fields are output to the alignment characterization database:
Reference time: image epoch year, image epoch day, image epoch second + t_ref
Alignment vector: X above

Alignment covariance: CovX above

RMS GCP fit

Number of GCPs used
Outlier threshold used

Scene off-nadir roll angle
Control type flag (DOQ or GLS)

LORp ID

LDCM-ADEF-001
Version 3

Cov[0][5] |
Cov[1][5]
Cov[2][5]
Cov[3][5]
Cov[4][5]
Cov[5][5] |




LDCM-ADEF-001
Version 3
Work Order ID
WRS Path/Row

LOS Model Correction Output Summary

The primary output of the LOS model correction algorithm is the updated "precision” LOS model. This
model has the same structure as the input LOS model which is described in the LOS Model Creation
ADD. Though the model structure is the same, the corrected ECI position and velocity and the
corrected ECEF position and velocity sections of the Ephemeris Model, the corrected roll-pitch-yaw
section of the Attitude Model, and the Precision Correction Model all contain updated values as a
result of the LOS model correction algorithm.

The contents of the output LOS Model Correction Solution File are presented in Table 1 below. This
report file documents the results of the LOS model correction procedure. It contains standard header

fields common to all geometric report files.

Field Description

1. Date and time 2. Date (day of week, month, day of
month, year) and time of file creation.

3. Spacecraft and 4. LDCM and OLI

instrument source

5. Processing Center 6. EROS Data Center SVT

7. Work order ID

8. Work order ID associated with
processing (blank if not applicable)

9 WRS path/row

10. WRS path and row

11. Software version

12.  Software version used to create report

13.  Off-nadir angle

14.  Off-nadir roll angle of processed image
file

15.  Acquisition Type

16.  Earth viewing or Lunar

17. LORpID

18. Input LORp image ID

19. L1G image file

20. Name of L1G used to measure GCPs

21. Precision solution
reference time

22.  Time reference for model correction
parameters as year, day of year and seconds
of day.

23.  Roll-pitch-yaw attitude
corrections

24. Attitude bias corrections in microradians

25.  Roll-pitch-yaw rate
corrections

26. Attitude rate corrections in
microradians/second

27. Roll-pitch-yaw standard
deviations

28.  Attitude bias parameter sigmas in
microradians

29. Roll-pitch-yaw rate std.
devs.

30. Attitude rate parameter sigmas in
microrads/sec

31. Ephemeris position
corrections

32. Ephemeris X-Y-Z bias corrections in
meters

33.  Ephemeris velocity
corrections

34.  Ephemeris Vx-Vy-Vz corrections in
meters/second

35. Position standard
deviations

36. Ephemeris X-Y-Z sigmas in meters

37. Velocity standard

38. Ephemeris Vx-Vy-Vz sigmas in




deviations meters/second

39.  Across-track covariance |40. 6-by-6 covariance matrix for roll, Y, Z,
matrix roll rate, Vy, Vz correction parameters.

41.  Along-track covariance 42.  6-by-6 covariance matrix for X, pitch,

matrix yaw, VX, pitch rate, yaw rate correction
parameters.
43.  Spacecraft roll-pitch-yaw | 44.  Spacecraft attitude at solution reference

at solution reference time

time in microradians

Table 1: LOS Model Correction Solution Output File Contents

LDCM-ADEF-001
Version 3

The contents of the LOS Model Correction Residuals file are shown in Table 2 below. This file
documents the GCP residuals for the final set of GCPs (after the outlier rejection loop has found no
additional outliers), including the residuals for each iteration of the weighted least squares solution
procedure. It thus contains both the initial (pre-correction) and final (post-correction) residuals. This
file is used as an input by the Geodetic Accuracy Assessment algorithm. The output residual file also
contains the standard report header mentioned above.

Field

Description

45. Date and time

46. Date (day of week, month, day of month,
year) and time of file creation.

47.  Spacecraft and 48. LDCM and OLI

instrument source

49. Processing Center 50. EROS Data Center SVT

51. Work order ID 52.  Work order ID associated with processing
(blank if not applicable)

53. WRS path/row 54. WRS path and row

55.  Software version 56. Software version used to create report

57.  Off-nadir angle 58.  Off-nadir roll angle of processed image
file

59.  Acquisition Type 60. Earth viewing or Lunar

61. LORpID 62. Input LORp image ID

63. L1G image file 64. Name of L1G used to measure GCPs

65. Number of GCPs used | 66. Number of valid (non-outlier) GCPs

67. Heading for individual | 68. One line of ASCII text containing column

GCPs headings for the individual GCP fields.

For each iteration:

lteration number

Starts with O for initial (uncorrected) residuals
and ends with "Final" for results of last iteration.

For each GCP:

Point ID

GCP ID (see GCP Correlation ADD for details)

Predicted L1G Line

Predicted L1G line location

Predicted L1G Sample

Predicted L1G sample location

GCP Time of Observation

Seconds from image epoch time

Latitude

GCP latitude in degrees

Longitude

GCP longitude in degrees

Height

GCP height in meters

Across-track Angle (delta)

Across-track LOS angle in degrees

Across-track Residual

Residual on delta converted to meters




Along-track Residual

Residual on psi converted to meters

Y Residual Residual in Y/line direction in meters

X Residual Residual in X/sample direction in meters
Outlier Flag O for outlier, 1 for valid GCP

GCP Source DOQ or GLS

LDCM-ADEF-001
Version 3

Table 2: LOS Model Correction Residuals Output File Contents

The fields stored in the characterization database for future sensor alignment calibration operations

are listed in Table 3 below.

Field Description

69. Work order ID 70.  Work order ID associated with
processing

71. WRS path/row 72.  WRS path and row

73. LORpID 74.  Input LORp image ID

75. Control Type 76. DOQ or GLS

77. Off-nadir angle 78.  Off-nadir roll angle of scene (in degrees)

79. Number of GCPs used 80.  Number of valid (non-outlier) GCPs

81.  Outlier threshold used 82.  Confidence level used for outlier
rejection threshold

83. RMS GCP Fit 84. RMS of final iteration across- and along-
track residuals in meters. This field would
subsequently be used to identify entries that
may be suspect due to poor fits to the ground
control.

85.  Precision solution 86.  Time reference for model correction

reference time parameters as year, day of year and seconds
of day.

87. Roll-pitch-yaw alignment | 88.  Composite alignment angles in

angles microradians

89. Ephemeris position 90. Ephemeris X-Y-Z bias corrections in

corrections meters

91. Alignment covariance 92.  6-by-6 covariance matrix for roll, pitch,

matrix yaw, X, Y, Z correction parameters.

Table 3: Model/Alignment Characterization Database Output Fields

The fields stored in the characterization database to support future GCP quality assessment and
improvement activities are listed in Table 4 below (see note #3). Only the residuals for non-outlier

GCPs from the initial (zeroth) iteration are written to the characterization database.

Field Description
For each GCP:
93. Work order ID 94. Work order ID associated with processing
95. WRS path/row 96. WRS path and row
97. LORp ID 98. Input LORp image ID
Point ID GCP ID (see GCP Correlation ADD for details)

GCP Time of Observation

Year, day of year, and seconds of day

Ephemeris Position

Spacecraft ECEF position at GCP time (meters)




LDCM-ADEF-001

Version 3

Ephemeris Velocity Spacecraft ECEF velocity at GCP time

(meters/sec)
Spacecraft Roll-Pitch-Yaw Spacecraft roll-pitch-yaw at GCP time (radians)
True Latitude GCP latitude in radians
True Longitude GCP longitude in radians
True Height GCP height in meters
Apparent Latitude Latitude measured in L1G image in radians
Apparent Longitude Longitude measured in L1G image in radians
Apparent Height Height interpolated from DEM in meters
GCP Source DOQ or GLS

Table 4: GCP Residual Characterization Database Output Fields

7.2.3.8 Maturity

Though much of the ALI model correction algorithm was reusable there were several areas where
changes were required:

9. Logic which computes the OLI sensor alignment corrections implied by the precision attitude
and ephemeris corrections has been added to this algorithm (it runs as a pre-process in the
ALIAS alignment calibration algorithm) to ensure that the computed corrections are applied to
the proper sensor alignment matrix. Storing only the corrections leaves open the question of
what alignment they are relative to. This was not a problem in the heritage systems (L7 IAS,
ALIAS) because the alignment calibration process was run as one continuous flow using the
same set of data throughout. This approach limited the number of scenes that could be
processed and restricted the order of processing to be in data acquisition order. This restriction
will be lifted for OLIAS so that a much larger volume of data can be reduced and trended for
subsequent offline analysis. This requires the trended data to be converted to apparent
alignment angles so that acquisitions processed using different alignment calibrations can be
compared.

10.The covariance data that are trended for subsequent use in alignment calibration are a subset
of the full precision solution covariance.

11.Trending of a slightly enhanced version of the initial (zeroth) iteration GCP residuals has been
added to support offline research into large scale area triangulation. The path/row, date/time,
GCP ID, true position, and apparent (mensuration image) position are recorded for all non-
outlier GCPs.

12.Since the precision correction process will likely be run prior to any cloud screening and will
therefore frequently fail due to the inability to correlate GCPs in cloud covered imagery,
thresholds and bounds will need to be developed to detect cases in which the solution has
failed. In this case, scene processing would fail over to a terrain-corrected systematic data
flow. The prototype computes and reports three quality metrics: prefit GCP RMS, postfit GCP
RMS, and percent GCP outliers, but does not apply any threshold logic. The operational
version should apply thresholds on the pre-fit and post-fit GCP RMSE values, and make sure
that either a sufficient number of valid GCPs were used or that the percentage of GCPs
declared outliers was not too high.

13.Using a systematic terrain corrected image for GCP mensuration instead of the heritage
systematic image required some modifications to the GCP processing logic. Specifically, the
DEM elevation associated with the measured GCP image position is used to construct the
“apparent” LOS instead of using zero for a LOS projected to the ellipsoid surface as the
heritage algorithm does. Note that, while the actual GCP elevation could be used, this would
introduce error that would grow with the misregistration between the systematic image and the



LDCM-ADEF-001
Version 3
DEM, making the simpler approach less robust. This change was motivated by the large GCP
search areas that would be required in systematically corrected images for off-nadir scenes in
high elevation areas.
14.Using the DEM as the source of “apparent” GCP height allows the algorithm to support either
terrain corrected or systematic image inputs. If an input DEM is not provided, the “apparent”
GCP height will be set to zero as it is now. If an input DEM is provided, it will be used as the
source of the “apparent” GCP height. Note that the capability to use SCA-combined
mensuration images only applies for terrain corrected images.
15.The heritage ALIAS implementation generates a fatal error if the square root of a negative
number is encountered while computing partial derivatives. This can happen in the case of an
invalid GCP measurement. This will be enhanced for OLI to adopt the logic used in Landsat 7
wherein this condition is detected and used to declare the offending point an outlier rather than
generating a terminal error condition.

7.2.3.9 Notes

Some additional background assumptions and notes include:

6. The heritage aliprecision process uses the DDR for the L1G mensuration image to retrieve the
image framing and projection parameter information necessary to convert output space
line/sample coordinates to latitude/longitude but the same information is available in the grid
file, so either could be used.

7. The extent to which the model creation logic must be rerun was scaled back as compared to
the heritage implementation. The precision ephemeris corrections are embedded in the model
ephemeris so it must be regenerated but full model reprocessing is not truly necessary. This
was done in the past for convenience (because it's fast and was easy to simply invoke the
model creation logic as a subroutine — Update LOS Model).

8. Possible additional solution quality metrics include initial vs. final GCP distribution metrics but
are not implemented in the baseline version.

9. The heritage ALIAS (and Landsat) LOS model correction algorithms required the L1R file as
input data so as to provide the L1R input space image dimensions. This information will now
be available in the LOS model in the image sub-model so the L1R input is no longer required.



LDCM-ADEF-001
Version 3

7.2.4 OLI Resampling Algorithm

7.2.4.1 Background/Introduction

The Operational Land Imager (OLI) resampling method is used to take a L1R image, which has
unevenly spaced pixels with respect to the surface of the object imaged, and creates a reprojected
image where all image pixels are located within an evenly spaced set of grid points, or output space,
with respect the object imaged. This mapping is subject to the errors associated with the
interpolation method used to determine the digital numbers associated with the output image.

The geometric resampling grid and the geometric model are used to calculate the mappings between
the input and output space. The geometric model contains the individual detector offsets from a
nominal location while the geometric resampling grid contains all other mapping variables. The
resampling grid provides a mapping from a 2D input space to a 3D output space and vice versa. The
output space corresponds to x/y/z projection locations while the input space corresponds to
line/sample locations within the L1R. The z component in output space is elevation. If elevation is
not to be accounted for during processing an elevation of zero is used for mapping output pixels to
input pixels.

Due to what can be rather large sample-to-sample offsets within a L1R image, the cubic convolution
interpolation option works in a two step process. A hybrid set of pixels in the sample direction are
created using cubic convolution resampling in the line direction. This creates a set of unevenly
spaced pixels in the sample direction. The Akima A interpolation method is then used to determine
the final digital number for the output image by resampling the hybrid pixels in the sample direction.
The nearest neighbor resampling option simply determines the closest input pixel for corresponding
output pixel.

The OLI resampling algorithm is derived from the corresponding ALI algorithm used in ALIAS. The
sensor architecture between the instruments is similar enough that a majority of the ALIAS algorithm
can be reused. The baseline geometric modeling approach assumes that the 3D gridding approach
used within ALIAS can also be used for OLI. The heritage algorithm will have to be modified to
accommodate LDCM data formats.

7.2.4.2 Dependencies

The OLI resampling algorithm assumes that the Ancillary Data Preprocessing, Line-of-Sight (LOS)
Model Creation and Line-of-Sight Projection to Ellipsoid and Terrain algorithms have been executed
and a L1R has been generated. If a digital elevation model (DEM) is given as input to account for
relief, or terrain, displacement the grid must have an adequate number and range (elevation bounds)
of z-planes to cover the entire elevation range within the L1R. A geometric model and grid must be
available for the L1R. More information about the data structure and contents of the Geometric
Model and Resampling Grid can be found in the Ancillary Data Preprocessing, Line-of-Sight (LOS)
Model Creation and Line-of-Sight Projection to Ellipsoid and Terrain Algorithm Description
Documents (ADDs).



LDCM-ADEF-001
Version 3
7.2.4.3 Inputs

The resampling algorithm and its component sub-algorithms use the inputs listed in the following
table. Note that some of these “inputs” are implementation conveniences (e.g., using an ODL
parameter file to convey the values of and pointers to the input data).

Algorithm Inputs

L1R Image

Resampling Grid (see the Line of Sight Projection ADD for contents)

Bands to process

Terrain correction Flag (yes/no)

DEM (if terrain flag set to yes)

SCA combine flag (yes/no)

Geometric model (see Line of Sight Model Creation ADD for contents)

Resampling type (CC,NN)

Minimum and maximum DN of output (see note #9)

Output data type

a (if resampling type is CC) (defaults to -0.5)

Fill pixel value

7.2.4.4 Outputs

Resampled output image (L1G, L1GT or L1T)

Resampled image data (band separated, either SCA combined or SCA
separated)

Image data metadata fields (See tables 1 and 2)

7.2.4.5 Options

Cubic convolution or nearest neighbor resampling
Creating an output image with Sensor Chip Assemblies (SCAs) combined or separated
Applying terrain correction, yes or no

7.2.4.6 Procedure

OLI resampling interpolates radiometrically corrected but geometrically raw image data to a map
projected output space. The resampling process uses information stored in the resampling grid along
with focal plane calibration data stored in the geometric model to map output projection locations to
an input location. Since an input location for an output pixel typically lies at a non-integer location
interpolation is used to find the pixel values associated with this non-integer location. OLI resampling
is performed on the geometrically raw L1R data using one of two methods; cubic convolution
combined with the Akima A method, or nearest neighbor. Note that modulation transfer function
compensation (MTFC) and bilinear resampling are not supported in the baseline algorithm. Due to
the lack of inherent band registration and the need to perform sub-pixel registration to achieve OLI
band alignment, cubic convolution combined with the Akima A interpolation method will be used to
generate the standard LDCM products. It is also important to have the best subpixel accuracy in the
output image during geometric characterization and calibration, so cubic convolution is chosen for
interpolation during the characterization and calibration of the OLI instrument. The ALIAS-heritage
nearest neighbor interpolation capability is also provided as an option for special-purpose science
products and testing purposes. Since both standard product generation and geometric



LDCM-ADEF-001
Version 3
characterization and calibration are the focus of this document, the only interpolation method
discussed in detail here is the cubic convolution combined with the Akima A method.

During resampling, there is a need to know what input pixel goes with a given output pixel. The OLI
geometric processing system does not have a “true” inverse model to perform this calculation.
Instead, for a given output pixel, the corresponding input pixel is found from the forward and inverse
mapping coefficients stored in the resampling grid. There are two scenarios when performing this
calculation. The first involves performing resampling for a systematic image in which case the
dimension for z, or elevation, is either zero or a constant value. This involves only a two dimensional
operation in line and sample. The second involves performing resampling for a terrain corrected
image. A terrain corrected image has the effects of relief removed from the output imagery. When
working with a terrain corrected image, a 3-dimensional operation is performed during the inverse
mapping with the dimensions being input (L1R) line, input sample, and elevation (figure 1). Both
procedures of mapping output pixel locations to input pixel locations are discussed below.

Due to layout of the OLI focal plane, there are along-track offsets between spectral bands within each
SCA, along-track offsets between even and odd SCAs, and a reversal of the band ordering in
adjacent SCAs. This leads to an along-track offset in the imagery coverage area for a given band
between odd and even SCAs as well as an offset between bands within each SCA. To create a more
uniform image coverage within a geometrically corrected output product, the leading and trailing
imagery associated with these offsets is trimmed. This trimming is controlled by a set of
latitude/longitude bounds for the active image area for each band, contained in the input resampling
grid. Trimming is implemented by converting these bounds to a look up table that lists the starting
and ending sample location of active (non-fill) data for each line of the output image.

3D Geometric Grid

Input  Input Input Input Input Input
Sample Sample Sample Sample Sample Sample
is-2As  is-As is is+As is+2As is+3As

Input Liney Elevation
Input Line i Plane z+1
Input Line il+A
E levation
S tore output I Plane z
> P ] h = (z-z,)*Ah
line/sample —
(ol, os) fore] !
input (il, is, h) i i i i E levation
at this grid ce ; : : ; Plane z-1

Grid Resolution (Al, As, Ah)

Figure 1. 3D Grid Representation



LDCM-ADEF-001
Version 3
7.2.4.6.1 Using the geometric grid to map an output pixel location to an
input pixel location.

To find an input line/sample location for an output line/sample location given that the elevation is zero:

1) Calculate an input line and sample location using the rough polynomial stored in the resampling
grid and the current output line and sample location.

M=

N
approximateinputline_Z{ (ra *(outputsample)m)*(outputline)”}

=0

3
I

0
M
approximate inputsample [Z rb, . * (outputsample)” ) (outputline)”}

I
Mz

O

n=

Where:
ra = rough polynomial mapping coefficients for line mapping
rb = rough polynomial mapping coefficients for sample mapping
M = Number of sample coefficients in polynomial
N = Number of line coefficients in polynomial

Previous experience when working with the ALI instrument has demonstrated a 1st order polynomial
in both the line and sample direction will suffice for the rough polynomial, thus M =N = 1.

approximate input line =a, +a, * outputsample+a, * outputline + a, * outputsample* outputline
approximate inputsample=h, +b, * outputsample+a, * outputline + a, * outputsample*outputline

There is no evidence to believe that this will not also be the case when working with the OLI
instrument.

2) Calculate the grid cell location for the approximate input line and sample location.

approximate input line
number of lines per cell
approxinate input sample
number of samples per cell

row =

column =

Where:

number of lines per cell = size of grid cell in lines

number of samples per cell = size of grid cell in samples

Set this grid cell column and row location as the current grid cell column and row location.
3) Using the current grid cell location check if the correct grid cell has been found.

Use input (current) mapping grid cell coefficients (a; and b;) to map output line and sample to input:

input line = bg + by * output sample + b, * output line + bz * output line * output sample
input sample = ap + a; * output sample + a, * output line + az * output line * output sample



LDCM-ADEF-001
Version 3
Calculate the grid cell location for this input line and sample location:

input line
New row = -
number of lines per cell
input sample
new column =

number of samples per cell

If the new grid cell (new row and new column) is the same as the current grid cell (current row and
current column):
The correct grid cell has been found, inverse grid mapping coefficients for this grid cell are used to
calculate the input line/sample for the current output line/sample.

If the new grid cell (new row and new column) is not the same the current grid cell (current row and
current column):
The new grid cell is chosen as current grid cell and the 3" step is repeated until the correct
grid cell is found.

This routine or function listed above, of mapping output pixel locations to input pixel locations without
taking into account elevation, will be referred to as ols2ils (output space line-sample to input space
line-sample mapping). The ols2ils sub-algorithm takes a given output line and sample location and
calculates the grid cell column and row location along with the corresponding input line and sample
location for that output location.

To find an input line/sample location for an output line/sample location given that the elevation is not
zero:

1) Find the z planes that the elevation associated with the output pixel falls between.

z plane = (int)ﬂoor[
Where:

elevation
elevation increment )

elevation = elevation associated with current output location (from DEM)
elevation increment = elevation increment between z planes stored in grid
Zelev=0 = Z€r0 z plane, the index of the zero elevation z-plane
The output line/sample falls between z plane and z plane+1.

2) Call ols2ils for z plane and z plane+1. This yields (input sampleo, input linep), and (input sample;,
input liney).

3) Interpolate between z plane and z plane + 1 to find input line and sample location for elevation.
Calculate elevations for z plane and z plane + 1:
elevy = elevation increment * ( z plane - zero z plane )

elev; = elevy + elevation increment

Calculate weights for ols2ils results:



LDCM-ADEF-001
Version 3

_ elev, -elevation
elev, -elev,

0

_ elevation -elev
elev, -elev,
input sample = input sampleg * wop + input sample; * w;
input line = input lineg * wp + input line; * w;
Where:
input sampleg = input sample for z plane
input sample; = input sample for z plane + 1
input lineg = input line for z plane
input line; = input line for z plane + 1

1

This routine or function listed above, which performs the three-dimensional output space line-sample
to input space line-sample mapping, is referred to as 3d_ols2ils.

7.2.4.6.2 Resampling Methodology

The along and cross track detector offsets are applied during resampling. These include both the
dynamic odd and even terrain-dependent relief and parallax effects that were calculated during the
resampling grid generation, and the individual detector selection shift that are stored in the OLI
geometric model. The nature of these geometric effects due to the individual detector characteristics
is such that, in input space, they are evenly spaced in the line direction but unevenly spaced in the
sample direction. This is due to the fact that as you move along raw imagery in the line direction, the
detector number does not change. Since the detector number does not change along the line
direction in raw input space, the along track detector offset, stored within the geometric model, does
not change. These geometric effects, due to these detector offsets, are slowly varying in time staying
essentially constant within the area that resampling is performed. Therefore the along track
geometric effect, and essentially spacing in the line direction, can be treated as a constant over this
area. The same logic helps explain why the across track detector offset is not constant in the sample
direction, since each sample comes from a different detector. This creates unevenly spaced samples
in raw input space. An example of a detector layout and its’ associated offset can be seen in figure
2. The squares in figure 2 represent a location of an input pixel, taking into account the detector
offsets. The circle with the cross hairs in figure 2 represents the true input location for the current
output pixel. Itis at this point that an interpolated value is needed to represent the current output
pixel.



LDCM-ADEF-001
Version 3

column

1 2 3 4 5 6
detector :

——————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————

row

output

pixel § [><]

77777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

'
,,,,,,,,,

Figure 2. Example detector layout

Detector offsets are handled in the resampler by first applying a resampling kernel in the line direction
that assumes evenly spaced detectors. Cubic convolution interpolation is used in the line direction;
this will align a set of pixels in the sample direction. Once the pixels are aligned in the sample
direction, at uneven spacing, the Akima A interpolation is used to find the final output pixel value.

Cubic convolution interpolation uses a set of piecewise cubic spline interpolating polynomials. The
polynomials have this form:

(@+2) —(@+3) +1 0<|x<1
f(x)= a|X|3 —5a|x|2 +8alX|—4a 1<|X/<2
0 X >2

Four points, centered on the point to be interpolated, are used in interpolation. The weights for each
point are generated from f(x). The a in the cubic convolution function is a variable parameter that
effects the edge slope of the function. For standard processing, a value of -0.5 is used. An example
of what the cubic convolution function looks like, and the corresponding weights for a phase shift of
zero (marked as x's), is shown in figure 3.



LDCM-ADEF-001
Version 3

0.8 'r

o.el- ! |

Lox ok ok x

-3 —2 —1 a 1 2! 3

Figure 3. Cubic Convolution Function

As stated previously; for the OLI resampler the cubic convolution resampling process produces a set
of hybrid points that are aligned in the line direction. This is done by resampling several sets of L1R
pixels in the line direction using the cubic convolution kernel; each time cubic convolution is
performed one hybrid pixel is produced. The set of hybrid points produced from the cubic convolution
process are not evenly spaced in the sample direction. Figure 4 illustrates a set of hybrid samples
that have been aligned in the line direction using the cubic convolution process.



LDCM-ADEF-001
Version 3

column
1 2 3 4 5 6
detector ; ; row

hybridsampies X X |E

i created from:cubic convolution

------------------------------------------------------------------------------------------------------------------------

.........................................................................................................................

Figure 4. Hybrid pixels for detector offsets

The Akima A method for interpolation is used for interpolating the hybrid pixels created from the cubic
convolution process. This method of interpolation does not require the samples used to be evenly
spaced. The Akima A method uses a third order polynomial for interpolation. The interpolating
polynomial is defined by the coordinates and the slopes of the two points that are on either side of the
point to be interpolated. The slopes of the adjacent points are determined as follows:

If five points are defined as 1, 2, 3, 4, and 5 then the slope at point 3, t, is defined as:

‘o Im, —m;|m, +|m, —m,|m,

Im, —my|+|m, —m,|

Where:
m; = slope of line segment defined by points 1 and 2
m, = slope of line segment defined by points 2 and 3
m3 = slope of line segment defined by points 3 and 4
m4 = slope of line segment defined by points 4 and 5

The Akima A method of interpolation is based upon the values (y) and slopes (t) on either side of the

point that is to be interpolated. The interpolating polynomial for a point x between x; and X.1 is then
defined as:



LDCM-ADEF-001

Version 3
3 yi+l — yi _2t| _ti+l ti +ti+l -2 yi+1 — yi
Y=y +t*(x=x)+ Xin — % *(x—x)*+ X”lz_xi *(x—x )
Xiyg =X (Xi+l_Xi)

Where:
x = sample location of point to be interpolated
Xi = location of point to the left of x
Xi+1 = location of point to the right of x
yi = DN value for the input point at x;
y = interpolated DN value for an output line and sample location

This methodology must be adjusted somewhat to account for higher frequency image distortion
effects than those that can be captured by the conventional resampling grid. To model such effects,
the LDCM attitude data stream is separated in to low-frequency and high-frequency segments with
the low-frequency portion being used for the OLI line-of-sight projection operations that build the
resampling grid. The high-frequency data are interpolated to match the OLI panchromatic band line
sampling times and stored in the OLI LOS model in a jitter table for application as an extra correction
at image resampling time. The process of separating the attitude data stream by frequency is
described in the OLI Line-of-Sight Model Creation Algorithm Description Document.

Sensitivity coefficients that relate these high-frequency roll-pitch-yaw jitter terms to the equivalent
input image space line and sample offset effects are stored in the OLI LOS grid. This makes it
possible to look up the roll-pitch-yaw jitter for each image line being resampled, and convert the jitter
values to compensating input line/sample corrections that are used to refine the image interpolation
location coordinates. The generation of these sensitivity coefficients is described in the OLI Line-of-
Sight Projection/Grid Generation Algorithm Description Document. The process by which the jitter
table from the OLI model and jitter sensitivity coefficients from the OLI grid are used during image
resampling is shown schematically in Figure 5 below. The items in green in the figure are new
structures added to support jitter correction.

Since the jitter effects vary by image line, the time delay between even and odd (or deselected)
detectors will lead to slightly different jitter effects in adjacent image samples. This is depicted below
in Figure 6. Six time samples (t0 through t5) for six adjacent detectors are shown in the figure. Note
that the input line location returned by the grid is adjusted differently for the even and odd detectors
due to their timing offset. Including the effects of detector deselect, the interpolated line location for
the hybrid pixels could be different for each detector. The current approach does not account for
sample-to-sample variations in jitter for each detector, applying the jitter correction only at the output
location. This preserves the uniform along-track sampling assumption required to apply the cubic
convolution kernel. Also note that while it is the interpolation location that is adjusted relative to the
input pixel locations in the line direction, it is the detector sample locations that are adjusted relative
to the interpolation location in the sample direction. The jitter-adjusted resampling procedure is
explained in more detail below.



OLI Grid
OLI Model
YT InfOut Line/Samp
|_Earth Constants | _
m In/Qut Polynomials
LOS Coefficients . —
Detector Offsets -
_ Jitter Sensitivity
Adjust
[Image Time Codes - mp Jitter Ke_mal
T || * Compute Sa thte= Weights
it
Inputimage Data e Line Jitter
— » Offset > Adjust
Interpolation
Location

LDCM-ADEF-001

Version 3

Qutputimage Pixel

Figure 5: OLI LOS Model and OLI LOS Grid Jitter Correction Data Flow

Detectors

Image

—

Adjust detector location based
on jitter at t3 andt4

Adjust detector location based

on jitter at t1 andt2

+ |o

Adjustline location based
on jitter at t3 andt4

MNote that sample jitter results

in unequal sample spacing

Interpolation location 5
returned from grid

Adjustline location based

on jitter at t1 andt2

? 3 T/ ? t3 ? 13 t
g P
t4 12 t4 12
—
] L ] ®

2
L~
zi/f/ﬁ
J
/14

Figure 6: Jitter Effects in Image Resampling

7.2.4.6.3 Building The SCA-trimmed Look Up Table (LUT).

Allocate SCA-trim LUT. There is a starting and ending sample location of active or valid imagery
stored for each line of output in the SCA-trimming look up table.

LUT = malloc( 2 * nl)




LDCM-ADEF-001
Version 3
Where nl = number of lines in output imagery
Given the set of geographic corner coordinates, read from the input grid file, that represent valid
imagery for a given band:
1. Map four corners to output projection coordinates.
2. Map four output projection coordinates to line and sample coordinates.
3. Set up polygon definition from four coordinates:
<px0,py0> = <sample upper left, line upper left>
<px1,pyl> = <sample upper right, line upper right>
<px2,py2> = <sample lower right, line lower right>
<px3,py3> = <sample lower left, line lower left>
<px4,py4> = <sample upper left, line upper left>
4. Set up sample locations for each line that is outside active imagery:
osampl =-1.0
osamp2 = output number of samples
fornn=01t0 3
if px[nn] < osamp1 then osampl = px[nn] — 1.0
if px[nn] > osamp2 then osamp2 = px[nn] + 1.0
5. Initialize LUT values to fill for all output lines:
For nn =0 to (2 * number of output lines)
LUT[nn] =0
6. For nn = 0 to number of output lines (nn and current line are synonymous).
6.1. Define line by sample locations calculated from 4 and current line
<x0,y0> = <osampl, nn>
<x1,yl> = <osamp2, nn>
6.2. Determine intersection between sides of polygon defined in 3 and line defined in 6.1
Initialize number of intersections for current line:
intersections = 0

Fornn=0to 3
(Simple line intersection routine)
xlk = x0 — x1
ylk =y0 —y1

xnm = px[nn] — px[nn+1]
ynm = py[nn] — py[nn+1]
xmk = px[nn+1] — x1
ymk = py[nn -1] - y1
det = xnm * ylk — ynm * xlk
if (| det| <= TOL ) lines are parallel, no intersection found.
s = (xnm *ymk - ynm * xmk ) / det
t = (xlk*ymk - ylk * xmk ) / det
if( s<0.0 || s>1.0 || t<0.0 || t>1.0)
no intersection found
else
intersection found, calculate point:
xp[ intersections ] =x1 +xlk*s
yp[ intersections ] =yl +ylk * s
intersections++
6.3. If number of intersections from 6.2. is two then the current line has valid active imagery
and the look up table values are these intersections and represent the start and stop of valid
imagery. Store values in SCA-trim lookup table.



LDCM-ADEF-001
Version 3
if xp[0] > xp[1]
LUT[2*nn] =xp[1]
LUT[ 2 * nn + 1] = xp[O]
else
LUT[2*nn] = xp[0]
LUT[ 2 * nn + 1] = xp[1]
(Note: If number of intersections is not two then current line has no valid active imagery and
SCA-trim lookup table will contain points outside of imagery, fill will be used).

7.2.4.6.4 Load/Build Information

To resample a Level 1R data set, the image file, grid file, geometric model, and, if the effects terrain
are to be removed, a DEM must be opened. See note #3

7.2.4.6.5 Resample LevellR Imagery

Loop on each band of each SCA for resampling.

1. Get resampling grid for the band and SCA to be processed.
2. Build SCA-trimming table.
3. Read one band of imagery for one SCA. Note #7.
3.1.Initialize jitter correction parameters
If current band is panchromatic then jitter_scale = 1
Otherwise jitter_scale = 2
4. Loop on output line/samples
4.1.Check to see if output line/sample is within SCA-trimming bounds.
if output sample > LUT[ 2 * output line | &&
output sample < LUT[ 2 * output line + 1] then proceed
else output pixel = fill
4.2.1f image is terrain corrected, calculate elevation dependent input line/sample location.
4.2.1) Get elevation for output pixel location X/Y location from DEM (elevation). See note #3.
4.2.2) Map the output line/sample back into input space using the grid and the function
3d_ols2ils.
4.3.1f image is not terrain corrected calculate zero elevation (ellipsoid surface) input
line/sample location.
4.3.1) Set elevation to zero
4.3.2) Map the output line/sample back into input space using the grid and the function ols2ils.
4.4. Calculate actual input sample location; for sample location (int)input sample calculated from
either 4.2 or 4.3:
4.4.1) Calculate detector offset parallax scale.
Scale = (int) floor(detector along track offset + 0.5) (in geometric model). See note #4.
4.4.2) Calculate sample odd/even parallax offset
Asample_oe = (do + elevation * d; ) * scale
Note that (do + elevation * d; ) is the parallax (in pixels) per pixel of along track offset
from the nominal detector location.
Where:
do 1 = odd/even sample parallax coefficients stored in the grid
4.4.3) Get sample fractional offset
fractional sample offset =



LDCM-ADEF-001
Version 3
detector across track offset (in geometric model)

4.4.4) Calculate sample jitter adjustment
4.4.4.1) Calculate the index into the jitter table for the current image line
jit_index = (int)(jitter_scale*(input line — pixel column fill (defined below)))
Make sure jitter index is within the range of the jitter table. Set to the min or max value
(whichever is closest) if it is outside the range.

4.4.4.2) Calculate the fractional jitter table index
Ajit_index = jitter_scale * input line — floor( jitter_scale * input line)

4.4.4.3) Calculate simple sample jitter adjustment
samp_jitterO = samp_sens|[0] * jitter_table[jit_index].roll
+ samp_sens[1] * jitter_table[jit_index].pitch
+ samp_sens|[2] * jitter_table[jit_index].yaw
samp_jitterl = samp_sens|0] * jitter_table[jit_index+1].roll
+ samp_sens[1] * jitter_table[jit_index+1].pitch
+ samp_sens[2] * jitter_table[jit_index+1].yaw
samp_jitter = samp_jitter0 * (1-Ajit_index) + samp_jitter1*Ajit_index
Where:
samp_sens|0] is the sample direction jitter roll sensitivity,
samp_sens[1] is the sample direction jitter pitch sensitivity,
samp_sens|[2] is the sample direction jitter yaw sensitivity,
for the current grid cell, from the OLI grid.
jitter_table[n] is the jitter table roll-pitch-yaw vector for row n,
from the OLI model.

4.4.4.4) Refine the sample jitter to compensate for line jitter
line_jitterO = line_sens|[0] * jitter_table[jit_index].roll
+ line_sens[1] * jitter_table][jit_index].pitch
+ line_sens[2] * jitter_table[jit_index].yaw
line_jitterl = line_sens[0] * jitter_table[jit_index+1].roll
+ line_sens[1] * jitter_table][jit_index+1].pitch
+ line_sens[2] * jitter_table[jit_index+1].yaw
line_jitter = line_jitterO * (1-Ajit_index) + line_jitter1*Ajit_index
Where:
line_sens|0] is the line direction jitter roll sensitivity,
line_sens[1] is the line direction jitter pitch sensitivity,
line_sens[2] is the line direction jitter yaw sensitivity,
for the current grid cell, from the OLI grid.
This is the error in the line coordinate used above, due to line jitter.
samp_rate =
samp_sens[0]*(jitter_table[jit_index+1].roll-jitter_table][jit_index].roll)
+ samp_sens[1]*(jitter_table[jit_index+1].pitch-jitter_table[jit_index].pitch)
+ samp_sens[2]*(jitter_table[jit_index+1].yaw-jitter_table[jit_index].yaw)
This is the rate of change of sample jitter with line coordinate.
samp_jitter += line_jitter*samp_rate
This is the sample jitter correction adjusted for the effects of line jitter.



LDCM-ADEF-001
Version 3
4.4.5) actual input sample = input sample - Asample_oe - samp_jitter - fractional sample offset
(See note #5). These corrections are subtracted rather than added because what we are
doing here is, rather than adjusting the input space interpolation location, computing the
apparent location of the detector to the left of the interpolation location to make sure we
have the correct range of samples to feed the interpolation logic. If the above adjustments
lead to the “actual input sample” being greater than (to the right of) the original input
sample location, then we move our sample range one more sample to the left. We
perform a similar calculation on the detector to the right of the input space interpolation
location to make sure that we don’t have to shift one more sample in that direction. See
also the note in section 4.6.2 below.
4.5. Create fractional pixel shift for current input location:
Aline  =inputline - (int) input line
Asample = input sample - (int) input sample
4.6.Create aligned samples for Akima resampling by applying cubic convolution weights in line
direction.
4.6.1. Loop on actual input sample location:
For hybrid sample = (int) actual input sample - 2 to (int) actual input sample +3 (Note #5. One
extra hybrid sample created to left and right of minimum number of samples needed for Akima
interpolation)
In the case of NN resampling, the loop limits are reduced to:
For hybrid sample = (int) actual input sample to (int) actual input sample +1
4.6.1.1. Calculate line and hybrid sample detector offset parallax scale
scale = (int) floor(detector along track offset + 0.5) (in geometric model). See note #4.
4.6.1.2. Calculate odd/even detector offset, parallax correction, and jitter correction for
hybrid detector.
4.6.1.2.1. Odd/even detector offset and parallax corrections.
Aline_oe  =(cp + elevation * c; ) * scale + pixel column fill - nominal detector fill -
at_offset[hybrid sample]
Asample_oe = (do + elevation * d; ) * scale
Where:
Co,1 = odd/even line parallax coefficients stored in the grid
do,1 = odd/even sample parallax coefficients stored in the grid. Note that (co + elevation
* C1 ) is the along-track parallax (in pixels) per pixel of along-track offset from the
nominal detector location and (do + elevation * d; ) is the across-track parallax (in pixels)
per pixel of along-track offset from the nominal detector location.

4.6.1.2.2. Jitter correction
The sample jitter correction is calculated as described in section 4.4.4 above. The line
jitter correction is calculated as follows:
jit_index = (int)(jitter_scale*(input line — pixel column fill))
Ajit_index = jitter_scale * input line — floor( jitter_scale * input line)
line_jitterO = line_sens|[0] * jitter_table[jit_index].roll
+ line_sens[1] * jitter_table[jit_index].pitch
+ line_sens[2] * jitter_table[jit_index].yaw
line_jitterl = line_sens|[0] * jitter_table[jit_index+1].roll
+ line_sens[1] * jitter_table[jit_index+1].pitch
+ line_sens[2] * jitter_table[jit_index+1].yaw
line_jitter = line_jitterO * (1-Ajit_index) + line_jitter1*Ajit_index
Where:



LDCM-ADEF-001
Version 3
line_sens|0] is the line direction jitter roll sensitivity,
line_sens[1] is the line direction jitter pitch sensitivity,
line_sens[2] is the line direction jitter yaw sensitivity,
for the current grid cell, from the OLI grid.
This is the error in the line coordinate due to jitter.
line_rate =
line_sens[O]*(jitter_table[jit_index+1].roll-jitter_table[jit_index].roll)
+ line_sens[1]*(jitter_table[jit_index+1].pitch-jitter_table[jit_index].pitch)
+ line_sens[2]*(jitter_table[jit_index+1].yaw-jitter_table[jit_index].yaw)
This is the rate of change of line jitter with line coordinate.
line_jitter += line_jitter*line_rate
This is the line jitter correction adjusted for the second order effects of line jitter. Note the
similarity to the sample correction described in 4.4.4.4.

4.6.1.3.  Calculate new hybrid line location.
4.6.1.3.1. hybrid line = (int)floor(input line + Aline_oe + line_jitter) .
Note that in this case we add the corrections since we are adjusting the interpolation
location.
4.6.1.4. Calculate new fractional hybrid line location.
Ahybrid line = input line + Aline_oe +line_jitter — hybrid line
If |Ahybrid line| > 1 then the integer line index must be adjusted and Ahybrid line brought
back into the -1 < Ahybrid line < 1 range (see note #5).
4.6.1.5. Apply cubic convolution in line direction to hybrid sample line DNs.
4.6.1.5.1. Calculate cubic convolution weights. See note #2

2
w,,, = > f(n—Ahybridline)
n=-1
Where f is equal to cubic convolution function.
4.6.1.5.2. Apply cubic convolution weights to L1R DNSs.
hybl’ld line DN =wp*hg+w;*hy +ws*hy+ w3 *hg
Where
Wo,W1,W2,W3 = Cubic convolution weights for Ahybrid line.
ho = DN from L1R for hybrid sample, input line location - 1
h, = DN from L1R for hybrid sample, input line location
h, = DN from L1R for hybrid sample, input line location + 1
hs; = DN from L1R for hybrid sample, input line location + 2
In the case of NN resampling, the values of hybrid line and Ahybrid line are used to select
the closest line for the current detector/sample column, instead of being used to compute
weights. The hybrid line DN is then the L1R DN value for the closest line location.
4.6.2. Calculate the apparent Akima pixel location for the current hybrid sample.
Akima pixel location x; =
hybrid sample location - Asample_oe
- across track detector offset (in geometric model)
- samp_jitter (computed per section 4.6.1.2.2 above)
Note that in this case the across-track terrain parallax and sample jitter effects are subtracted
instead of added. This is because we are adjusting the apparent detector location relative to
the output pixel interpolation point instead of adjusting the output pixel interpolation location
itself. We must do it this way in the sample direction because the adjustments are different for
each detector. As for the across-track offset term, which is also unique for each detector, the



LDCM-ADEF-001
Version 3
detector offset corrections are designed to be applied as line-of-sight corrections in the
instrument coordinate system. As such, the along-track offset is a +X LOS correction and the
across-track offset is a +Y LOS correction. The instrument +X axis is in the +line direction but
the +Y axis is in the —sample direction, so this correction is also subtracted from the apparent
detector location.
4.7.Calculate output DN using Akima interpolation and hybrid line/sample information from 4.6.1
and 4.6.2.
4.7.1. Calculate Akima weights according to pixel locations from 4.6.2.

m, = DNi DN,
X, — X,
m, — DNz =N,
X, — X,
_ DN, -DN,
2 X — X,
_ DN, - DN,
X, - X
_ DN, -DN,
X —x,
ak, = DN,
k. - Im, —m,|*m, +|m, —mg|*m,
Im; —m,|+|m, —m|
(3.0*m2 _2.0*ak1 - |m4 — m3|*m2 +|m2 B ml|*m3
k= Im, —mj|+|m, —m,|
? X3 =X,
k- Im, —my|*m, +|m, —m,|*m, 20%m,
= Im, —m;| +|m, —m,|
’ (X3 _Xz)z
Where:

DN, = hybrid DNs calculated from cubic convolution, step 4.6.1.
Xn = Akima locations calculated in step 4.6.2.

ak, = Akima weights

m, = Akima slopes

4.7.2. Calculate output pixel DN using Akima A method.
outputDN = ak, + ak, *ds + ak, *ds” + ak, *ds®

Where

ds = (Asample + x,)
The output sample point is located between hybrid samples x, and x3 where Xx, is from n=0...5.
In the case of NN resampling, the Akima pixel locations for the two closest detectors are
examined to see which is closest to the output location. The hybrid line DN value for the
closest detector is selected as the output DN value.

4.8. Write output DN to image file. See note #9.



LDCM-ADEF-001
Version 3
5. Write out data descriptor record for image file. The baseline contents of the data descriptor record

are shown in table 1. All fields present in the table refer to the imagery associated with the DDR
unless otherwise specified. Note that the scene roll angle is a new field added for off-nadir
acquisitions. It would be computed from the LOS model by interpolating the roll angle from the
"original” attitude data sequence at the time corresponding to the precision model reference time
t_ref. This would be done using the logic described in the Find Attitude sub-algorithm in the LOS
Projection ADD, except operating on the "original” rather than the "corrected" attitude data
sequence. The logic for using the "original” data is so that this scene roll value will not change due
to LOS model correction. The sign convention on the roll angle is such that a positive roll angle
would correspond to a positive orbital Y coordinate which is looking to starboard (See note 11).

7.2.4.6.6 Combining SCAs into one output file.

For an SCA combined output image the overlap region between SCAs can be handled by averaging
the pixels between SCAs (See Note 12).

7.2.4.7 Prototype Code

Input to the executable is an ODL file, output is a HDF5 file containing the image data and
corresponding metadata. The output format follows the format of the L1G DFCB version 1.

The prototype code was compiled with the following options when creating the test data files:
-g -Wall -march=nocona -m32

Main driver for resampler (oliresample)
Main driver for OLI resampler. Performs the following steps or calls the following modules.
1) Read input ODL parameters (getpar).
2) Read OLI input file (oli_get_model).
3) Read OLI grid headers (oli_get_grid_headers).
If terrain correction read DEM file (oli_get_dem).
4) Open L1G image file (open_l1g_resamp_image).
5) Get fill pixel value (get_fill_pixel).
For each band to process
6) Read grid band pointers (oli_get_grid_pointers).
7) Openl/initialize L1G band file (start_I1g_resamp_band).
8) Setup resampling kernel (Kernal_Setup).
9) Read resampling kernal information for resampling (get_kernal_info).
For each SCA
10) Read one SCAs worth of data from LOra
(get_input_image_data_|Ora).
11) Resample SCA worth of data (resample_image).
if not SCA combined image file write SCAs worth of data
(write_l1g_resamp_band).
If SCA combined image file write full SCA file (write_I1g_resamp_band).
12) Close band in L1G output file (stop_l1g_resamp_writing_band).
13) Free grid band pointer (oli_free_grid).
14) Close L1G image file (close_l1g_resamp_image).



LDCM-ADEF-001
Version 3
15) Update L1G metadata (update_l1g_metadata).

Get resampling processing parameters (getpar).

This function reads the OLI resampling parameters from the ODL file. Also contains two functions,
get_combine_sca and get_fill_pixel, that will return input flags as to whether 1) combine the SCAs in
the output image and 2) what DN value should be used for fill.

Resample a given set of DN value using the Akima method (akima).
Function takes a given set of X locations with corresponding Y values and finds the Y value for the
given input X location (xp). Function returns interpolated Y value associated with coordinate xp.

Calculate cubic convolution weight for a given location (cubic_convolution).
Given a cubic convolution alpha parameter and X value return the Y value associated with the cubic
convolution function.

For a given band read one SCAs worth of LOR imagery (get_input_image_data_|Ora).
Given a LOrp file name, band number, and SCA number read an SCAs worth of data from LOrp file.
Number of lines to read is taken from number of lines stored in models image data structure.

Set up resampling kernel (module kernal.c).
Using a set of functions, create a set of resampling weights. The resampling kernel is created and
managed though several steps within the kernal.c file.

Kernal_Setup sets up kernal table or pointer. Allocates pointer and calls
Create_Resampling_Kernal_1D to create a set of cubic convolution weights. Set is a look-up table of
1D cubic weights representing 1/64 of a shift in pixel locations.

Cleanup_Kernal frees up cubic convolution pointer.

Create_Resampling_Kernal 1D creates a set of one dimensional cubic convolution based on
the input alpha parameter.

Get_Resample_Weight_Table_Ptr returns a pointer containing a set of 1D cubic convolution
weights.

get_lines_in_kernal returns number of lines in resampling kernal.

get_samples_in_kernal returns number of samples in resampling kernal.

num_left_kernal _samples returns number of resampling weights to the "left" of the point that
is to be interpolated.

num_right_kernal_sample returns number of resampling weights to the "right" of the point
that is to be interpolated.

num_top_kernal_lines returns the number of lines "above" the point to be interpolated.

num_bottom_kernal_lines returns the number of lines "below" the point to be interpolated.

get_kernal_step_size returns the offset size in pixels between two sets of resampling
weights.

get_kernal_info returns the number of steps (or number of sets of weights) within the
resampling kernal, total number of sets of weights within the resampling table, width of resampling
kernal, and height of resampling kernal.

Read DEM file (oli_get_dem).
Reads (Image Processing Element) IPE L1G file contain DEM data.

Open, close, write to L1G output image file (file output_image_data.c)



LDCM-ADEF-001
Version 3
The file output_image_data.c contains several routines used for managing the output L1G file. Calls
and functions are listed below.
open_l1g_resamp_image opens a L1G file.
start_I1g_resamp_band opens one band within an L1G file.
write_|l1g_resamp_band writes image data to L1G file.
stop_l1g_resamp_writing_band closes band within L1G file.
close _I1g_resamp_image closed L1G file.

Resample one SCA for one band of LORp imagery (file resample_image.c)
The file resample.c contains several functions used in resampling imagery.

setup_trim_lut builds a lookup table that contains the starting and ending output pixel of valid
imagery. Everything outside of this bounds will be set as fill

cleanup_trim_lut frees static buffer that contains SCA-trimming lookup table array.

get_kernal_info retrieves resampling weight table and corresponding characteristics.

setup_detector_offsets stores the detector offsets, along and across, level-OR fill, and
nominal detector fill within arrays. Used by resample_image for applying detector offsets when
resampling imagery.

resample_image is the main guts of the resampler. Takes the image data, DEM data if terrain
corrected, grid band pointer, and OLI model structure to resample one SCA or one band of imagery.
Loops on output pixels mapping each output pixel location to a input location and resamples LORp (or
L1R when it becomes available) using algorithm described in procedure section.

calc_jitter computes the sample and line direction jitter corrections for the current input
line/sample location. This corrections are the adjustments to the input space interpolation location
required to compensate for the high frequency jitter present at the time of observation.

calc_jitter_samp is a simplified version of calc_jitter that computes only the sample direction
jitter correction. It is implemented as a separate function for processing efficiency because it is
invoked more frequently than calc_jitter.

Update L1G metadata information (update_|I1g_metadata).
Update L1G metadata according to projection information stored within resampling grid.

Write out ENVI header file (write_envi_hdr).
Writes out ENVI header file for image flat file that is written to disk. Only used for testing purposes.

Input and Output File Details

Output is a L1G image file formatted according to the L1G DFCB. The output is a HDF5 file . The
metadata associated with the output file is listed below. These tables follow the meta data fields in
version 1 of the LDCM Level-1 G DFCB. The metadata is split up into a file metadata and band
metadata. For further information on this format see the L1G DFCB. Not all fields within the prototype
metadata fields are filled in with valid data. Fields in which data is not correctly filled are indicated in
italics (see notes #9 and #10).

File Metadata

Field Description Type
Projection Code GCTP projection code integer
Zone Code Map projection zone code integer
Datum Projection datum code char[16]




Spheroid Code Projection spheroid code integer
Projection Units Map projection units char[12]
Projection Parameters GCTP projection parameters double[15]
WRS Path WRS-2 Path integer
WRS Row WRS-2 Row integer
Roll Angle Off nadir pointing angle double
Spacecraft Spacecraft name char[32]
Collection Type Acquisition type char[32]
Capture Direction Ascending or descending char[32]
Capture Date Acquisition date char[11]
Capture Time Acquisition Time char[9]
Correction Type Product type char[5]
Resample Type Resampling method char[4]
Software Version Software version char[11]
Ingest Software Version | Ingest software version char[11]
Table 1 L1G File Metadata Fields

Band Metadata

Field Description Type
Band Number Band Number integer
Band Name LDCM Band designation char[30]
Upper Left Y Upper left Y map coordinate double
Upper Left X Upper left X map coordinate double
Upper Right Y Upper left Y map coordinate double
Upper Right X Upper left X map coordinate double
Lower Left Y Lower left Y map coordinate double
Lower Left X Lower left X map coordinate double
Lower Right Y Lower right Y map coordinate double
Lower Right X Lower right X map coordinate double
Projection Distance Y Y map projection distance double
Projection Distance X X map projection distance double
Maximum Pixel Value Maximum DN double
Minimum Pixel Value Minimum DN double
Pixel Range Valid Flag indicating valid pixel max/min integer
Maximum Radiance Maximum radiance double
Minimum Radiance Minimum radiance double
Spectral Radiance Offset to convert to spectral radiance double

Scaling Offset
Spectral Radiance Gain to convert to spectral radiance double

Scaling Gain
Radiance valid Flag to indicate radiance values are integer

valid

Reflectance Scaling Offset to convert to reflectance double

Offset
Reflectance Scaling Gain to convert to reflectance double

LDCM-ADEF-001
Version 3



LDCM-ADEF-001

Version 3
Gain

Reflectance valid Flag to indicate radiance values are integer

valid
Instrument Source Instrument associated with band char[32]

imagery

Table 2 L1G Band Metadata Fields
7.2.4.8 Maturity

1. Since the OLI 3D grid approach is adopted, the ALIAS code was reused with limited
modifications.

2. Due to the detector select option aboard OLI, the detector offset approach has been changed.
Under the new methodology the along track detector offsets are stored with the whole pixel
adjustment needed due to the detector selected and the small sub-pixel adjustment that was
present in the ALI CPF detector offset field. This leads to a need to separate out the fractional
detector offset from the detector select offset at times during processing.

3. The problem of multiple terrain intersections needs to be addressed, particularly for off-nadir

acquisitions. A terrain occlusion mask will be generated to identify these obstructed pixels (see
note #1 below for additional details), but the current thinking is that it would not alter the
behavior of the resampler, as sprinkling fill pixels throughout a product image can wreak havoc
with some applications. Generating a separate terrain occlusion mask will allow users to
evaluate the extent of the problem and apply the mask if appropriate to a particular application.
This is being addressed in the Terrain Occlusion ADD.

All items in maturity section have been addressed. The OLI 3D grid approach was adopted. The
IPE L1G and LOR libraries were used within the prototype code. The detector delay logic was
changed to handle the OLI detector select characteristics. The terrain occlusion ADD addresses
the terrain issues associated with the OLI instrument.



LDCM-ADEF-001
Version 3
7.2.5 Terrain Occlusion Mask Generation Algorithm

7.2.5.1 Background/Introduction

The heritage Landsat and ALI/EO-1 image resampling procedures ignored the possibility of multiple
terrain intersections due to off-nadir viewing toward the edges of the imaging swath. This was a
reasonable simplification for Landsat with its fixed nadir viewing geometry. Although the ALI was
capable of off-nadir pointing, this capability was mostly used to acquire different portions of the
nominal Landsat swath, given that the ALI’s focal plane was only 20 percent populated. Furthermore,
EO-1 was a technology demonstration project with a minimal budget for ground processing algorithm
development, so Landsat capabilities were reused as is wherever possible.

Ignoring the multiple terrain intersection effect is less defensible for the pointable OLI which will be
acquiring off-nadir scenes from adjacent WRS paths in small, but significant numbers, for product
generation. The approach to this problem adopted here is to compute the ground locations where the
OLI line of sight is obstructed by terrain, and provide this information in a mask. The image
resampling logic will be permitted to populate all output image pixels with apparent values according
to the heritage algorithm. Some of these will be erroneous data that actually represent terrain
intersection points closer to the imaging sensor. These can be subsequently identified and, if
appropriate, replaced with fill by the user based on the contents of the terrain occlusion mask
generated by this algorithm. This approach was felt to be preferable to inserting fill in the product
image as some image exploitation algorithms (e.g., control point mensuration) are sensitive to the
presence of fill.

Generating the terrain occlusion mask can also be performed without reference to the output image
itself, requiring only the digital elevation model (registered to the product image output space) and the
LOS projection grid as inputs. For each pixel in the output image, the algorithm uses the grid file to
locate the corresponding pixel in input (L1R) space. It then uses the grid to compute the output space
line/sample location corresponding to the same input line/sample at the maximum elevation plane.
The line connecting the original output pixel location with the maximum elevation location
corresponds to the projection of that pixel’s line-of-sight into output space. By interpolating elevation
model heights for points along this line and comparing them to the computed LOS height, terrain
intersection points that are closer to the imager can be detected. Each point in the output terrain
occlusion mask will be flagged as visible or terrain occlusion.

This is a new algorithm with no ALIAS or Landsat heritage though it will make extensive use of the
library functions that access the grid file.

7.2.5.2 Dependencies

The terrain occlusion algorithm assumes that the LOS Projection and Gridding algorithm has created
the output product LOS projection grid and that the digital elevation model has been resampled to
match the output product frame. The elevation planes in the LOS projection grid must span the range
of elevations in the elevation model.

7.2.5.3 Inputs

The terrain occlusion algorithm and its component sub-algorithms use the inputs listed in the following
table. Note that some of these “inputs” are implementation conveniences (e.g., using an ODL
parameter file to convey the values of and pointers to the input data).

[ Algorithm Inputs |




LDCM-ADEF-001
Version 3

ODL file (implementation)

OLI Grid file

DEM Grid file

Original Unresampled DEM file

Terrain Occlusion Mask file name

Terrain Occlusion band

7.2.5.4 Outputs

TO (terrain occlusion) mask file

TO mask data descriptor record (DDR) (see
note 4)

TO mask image

7.2.5.5 Options
None.

7.2.5.6 Procedure
Read unresampled DEM to determine maximum elevation within file (maximum_elevation).
Initialize terrain mask to O.
For each SCA:
For each output pixel:

1) Retrieve the elevation for the current output pixel location (current elevation) from the
DEM.

a. Using DEM resampling grid map L1T output pixel location to geographic
unresampled DEM line/sample location.

)] Calculate grid cell row and column index.

grid row = output line / number grid cell lines

grid col = output sample / number grid cell samples
1)) Determine grid cell number.

grid cell number = grid row * number grid cell samples +
grid col

iii) Look up grid mapping coefficients based on grid cell.
coeff = grid cell coefficient reverse[grid cell number].
V) Calculate DEM line/sample location.
DEM line = coeff.line[0] +
output sample * coeff.line[1] +
output line * coeff.line[2] +
output sample * output line * coeff[3].line
DEM sample = coeff.sample[0] +
output sample * coeff.sample[1] +



LDCM-ADEF-001
Version 3
output line * coeff.sample[2] +

output sample * output line * coeff[3].sample

b. Perform bilinear interpolation at location in DEM from step 1a) to determine elevation
of current L1T output location.

)] Determine subpixel location
Integer line = (int)DEM line
Integer sample = (int) DEM sample
ds = DEM sample — Integer sample
dl = DEM line — Integer line
1)) Determine location in DEM image buffer.
dem_ns = number samples in DEM
dem_nl = number lines in DEM
loc = Integer line * dem_ns + Integer Sample
i) Interpolate elevation for floating point location.
elevation =
(2.0 - ds) * (1.0 - dl) * dem.data[loc] +
ds * (1.0 - dl) *dem.data[loc+1] +

(1.0 - ds) *dlI * dem.data[loc+dem_ns] +

ds * dl * dem->data[loc+tdem_ns + 1]
Note:
For off-nadir images, pixel line-of-sight ground projections can extend outside the product
image area. Using the unresampled DEM as the source of elevation data should prevent
elevations from being needed outside the available data range as the terrain occlusion
calculation performs its “stepping process”. However a check to make sure that the elevation
being retrieved is greater than 0 in line and sample while less than dem_nl-1 and dem_ns-1
should be implemented. The process should issue a warning that the data to be retrieved is
outside of the DEM, and return the DEM elevation value for the closest edge line/sample
position (i.e., clip the DEM line/sample values at the DEM edges).

2) Run ols2ils to find input location for corresponding output location. This will  be based on
elevation for current output pixels (l¢,Sc).

3) Run get_output_Is for the input location calculated in 2) to find the corresponding
output location for the maximum elevation (Im,Sm).

4) Define the parametric equation for a line that connects (lc,Sc) t0 (Im,Sm)-
Sp=Sp+t*f
Lb=lo+t*g

where: 0<t<1

At t=0: I,=l; and sp=sc.

At t=1: I,=ln and sp=sn,



LDCM-ADEF-001
Version 3
Therefore

lo = I,
S0=Sc,
9=(Im-lc),
f=(Sm-Sc)
5) Compute the length of the line in output space:

d = MAX (1, /(s,, —s.)% + (I, —1.)?

6) Compute the increment of t to use to walk along the line:
_ MAX(s,, —s|:[l, = 1.}

At =

7) Walk along the line in increments of At, testing each point for terrain occlusion:
For j = 0 to (int)ceil(1/At)
t=j*At
8) Calculate the point of intersection:
Lb=lo+t*g
Sp=Sp+t*f

9) Round (Ip,sp) to get (Iy',sp"). Find the elevation for (I,',s,'") (pixel elevation) using the DEM
resampling grid as described in steps 1a) and 1b) above.

10) The value of t represents the ratio used to measure whether the elevation of (Ip',sp') is
large enough to obscure the current pixel of interest (lc,Sc).

if( (t * maximum elevation + (1.0-t) * current elevation) < pixel elevation )
Current pixel location (I¢,Sc) is occluded. Set terrain mask to 1 and exit loop.
else
Current pixel location (I¢,Sc) is not occluded. Continue to loop.

Determining Elevation (change from using co-registered DEM)

Due to the “walk-a-line” process of step 7) of the previous procedure the location of an elevation
requested could reside outside of the co-registered DEM used in creating the L1T. To account for
this the unresampled DEM and DEM geomgrid used to resample the DEM can be used to map points
from these points outside the L1T geographic extent to that within the unresampled DEM. Since the
unresampled DEM should extend outside the boundary of the L1T, this will allow the retrieval of
elevations outside the product image extent.

7.2.5.7 Prototype Code

The following is a list of the routines files associated with the prototype code and brief explanation of
the purpose of each.



LDCM-ADEF-001
Version 3
calc_dem_bounds
Takes an image data structure and returns the minimum and maximum values of the data values
present. This process defines the boundaries of the searching, or equations, to determine if a pixel
has been occluded by another pixel.

getpar
Reads input parameters from an ODL file. Input includes the LOS projection grid, coregistered DEM
and the band (or number of bands) to be inspected for pixel occlusion.

occ_get_elevation
Calculates pixel, or elevation, DN from an image data buffer using bilinear interpolation. Inputis an
IMAGE data structure and floating point location for DN calculation.

occlusion_get_geo
Uses the generic resampling grid to map points from the L1T output location to the unresampled DEM
location. Mapping is done through bilinear mapping coefficients stored within the generic grid.

occlusion

Main driver for calculating terrain occlusion mask. Calls getpar to retrieve input parameters, read
LOS projection grid, reads DEM file, calls calc_dem_bounds to determine bounds on DEM file, calls
terrain_occlusion_mask to calculate mask, frees LOS projection grid from memory, writes occlusion
mask to a flat file, and calls write_envi_hdr to create an ENVI header file for occlusion mask.

oli_get dem
Reads DEM file storing elevation and geographic information into image data structure. Calls several
IPE L1G HDF5 routines for reading DEM file.

terrain_occlusion_mask
Module that calculates the terrain occlusion mask. The equations and steps present within this
module are listed in the procedure section above. Occlusion mask is calculated using several
subroutines present within the terrain_occlusion_mask file:

terrain_occlusion_mask: Main driver for all functions in the

terrain_occlusion_mask file. Takes an input of the LOS projection grid, SCA
number, elevation data structure, maximum elevation present within coregistered DEM and
creates a terrain occlusion mask.

calc_occ_line_eq: Calculates the parametric equations for a line joining two

points.

occlusion_build_params: Calculates the length of the line in output space and

increment of t parameters.

map_to_input_occlusion: Maps an output space location to an input space

location.

calc_occ_scale: Calculates the scale needed to determine if a current pixel is

occluded.

write_envi_hdr
Writes out an ENVI header for the occlusion mask.

Prototype dependencies:
1) Input is a HDF4 heritage grid file.



LDCM-ADEF-001
Version 3

2) DEM file is HDF5 L1G image file.

4.

7.2.5.8 Maturity

The problem of multiple terrain intersections needs to be addressed, particularly for off-nadir
acquisitions. A terrain occlusion mask will be generated to identify these obstructed pixels (see
note #1 below for additional details), but the current thinking is that it would not alter the
behavior of the resampler, as sprinkling fill pixels throughout a product image can wreak havoc
with some applications. Generating a separate terrain occlusion mask will allow users to
evaluate the extent of the problem and apply the mask if appropriate to a particular application.
The algorithm does not account for detector specific even/odd and deselect offsets. It
generates the mask based on nominal detector locations.

The need to have the L1R image available to detect within-image fill conditions (due to nominal
detector/band shifting) is overtaken by events, since nominal detector/band alignment fill is not
used.

. Current prototype/test version has only been run on ALI imagery. The processing of

generating the mask is currently integrated within the ALIAS resampler code.

Early testing with OLI simulated data showed difficulty in defining what portion of a pixel is
obstructed, or what portion of another pixel is leading to the obstruction. This may lead to
further tweaking of defining the search areas and variables involved in calculating masked
pixels, however the under lying principles of the algorithm should remain the same.

7.2.5.9 Notes

Some additional background assumptions and notes include:

1.

The new logic required to calculate the terrain occlusion mask (particularly for off-nadir scenes)
is documented here, in a separate ADD, but may be implemented as part of the resampling
software for processing efficiency. The terrain occlusion (TO) mask output by this algorithm, is
also included as a possible (to be resolved) output in the resampling algorithm.

The current concept is to allow the user to specify the band(s) to use in testing for occlusion.
However for the terrain mask that is to accompany the L1T LDCM product, generation of the
mask for the SWIR1 band should be sufficient.

Early testing with ALI data showed few pixels being marked as masked. This, along with off-
nadir imaging not being a standard product, may lead to changes in how this algorithm will be
used during processing and product generation.

The DDR will be a component of the output TO mask image file, capturing the metadata
necessary to relate mask image pixels to ground positions. This structure is addressed in more
detail in the Resampling ADD.



LDCM-ADEF-001
Version 3

7.2.6 OLI Geometric Accuracy Assessment (L1T)

7.2.6.1 Background/Introduction

The OLI geometric accuracy assessment, or geometric characterization, algorithm analyzes the
results of the ground control point (GCP) measurements derived through correlation of the GCP
image chips with a precision and terrain corrected OLI L1T image. Unlike the similar geodetic
accuracy assessment algorithm, there is no precision LOS model correction step invoked to analyze
the GCP results and detect outliers. Instead, the geometric accuracy assessment is applied directly to
the results of control point mensuration in the L1T image. Statistics are computed for the GCP
measurements, with outliers detected and rejected based upon a t-distribution test. The GCP results
provide a measure of the accuracy of the output L1T product through direct comparison to an
absolute ground control source. Ideally, a different set of GCPs would be used for geometric accuracy
assessment than were used in the L1T LOS model correction process. This will require flagging some
GCPs in the GCP library as validation points to be withheld from the original GCP mensuration and
LOS model correction process and used only for geometric characterization. Setting these
control/validation flags is a Cal/Val Team responsibility.

The OLI geometric accuracy assessment algorithm has no direct ALIAS equivalent, but will be
derived from the OLI geodetic accuracy assessment algorithm.

7.2.6.2 Dependencies

The OLI geometric accuracy assessment algorithm assumes that the L1T product generation flow
has been executed to create an L1T image, and that this image has been correlated with a set of
validation GCP image chips (see note 3) using the GCP correlation algorithm, to produce a set of
GCP measurements. Normally this L1T image will be a standard SCA-combined L1T product, but the
GCP correlation algorithm may also be run on SCA-separated images in testing and anomaly
resolution scenarios.

7.2.6.3 Inputs
The geometric accuracy characterization algorithm uses the inputs listed in the following table. Note
that some of these “inputs” are implementation conveniences (e.g., using an ODL parameter file to
convey the values of and pointers to the input data).

Algorithm Inputs

ODL file

Measured GCP File Name

Band to process (See note 6)

L1T Image File Name (for access to metadata)

T-distribution outlier threshold

Output geometric report file name

LORp ID (for trending)

Work Order ID (for trending)

Characterization Database Output (Trending) Flag (on/off)

GCP residual output (on/off)

Measured GCP File Contents (see GCP Correlation ADD for full details)

GCP point ID

GCP latitude and longitude (in degrees) and height (in meters)

Correlation success/failure flag

Predicted GCP image line and sample location




Line and sample offsets in pixels

Measured band number

GCP source (GLS or DOQ)

L1T Image File Metadata Contents (see Image Resampling ADD for full
details)

WRS Path/Row (for trending)

Image pixel size (for measured band) in meters

Acquisition date (for trending)

Acquisition type (for standard report file header)

Scene roll angle (for trending and report file)

7.2.6.4 Outputs

Geometric Accuracy Report (output file and trending) (see Table 1 below for
additional details)

Processing Information

Processing Date and Time

Processing Center/Location

Processing Software Version

Processed L1T Image File Name

Data Set Information

Spacecraft and Instrument Source (LDCM/OLI)

Work Order ID

WRS Path/Row

Off-Nadir Angle

Acquisition Type (Earth, Lunar, Stellar) (will always be Earth)

LORp ID

Acquisition Date

GCP Information

GCP Source

Pixel Size (meters)

Number of valid GCPs

Mean latitude and longitude of GCPs

GCP Statistics

Mean, RMSE, Standard Deviation, Correlation Coefficient

GCP Residual Output Fields (written to report file only if option is selected)

For each valid GCP:

GCP point ID

GCP latitude and longitude (in degrees) and height (in meters)

Line and sample offsets scaled to meters

Measured band number

Measured SCA number (usually 0) (see note #4)

7.2.6.5 Options

Characterization database output on or off.
GCP residual output on or off.

7.2.6.6 Procedure

LDCM-ADEF-001
Version 3

Geometric characterization is performed on the measured GCP file output created by the GCP
correlation algorithm. See the GCP Correlation Algorithm Description Document (ADD) for further
details on the GCP mensuration process and its results. Geometric characterization reads the entire
set of GCP measurements, removes those flagged as correlation failures, performs a Student t-



LDCM-ADEF-001
Version 3
distribution test to detect and eliminate outliers, and calculates statistics for the remaining valid
residuals. The resulting statistics reflect the accuracy of the measured L1T image product relative to
the set of validation GCPs used in the correlation process, providing a measure of L1T product
accuracy that is independent of the control used to create the product.

The geometric accuracy assessment algorithm computes the same summary statistics as the
geodetic accuracy assessment algorithm. It differs from that algorithm in that it must read the raw
GCP measurement file produced by the GCP correlation algorithm instead of the precision correction
residuals file produced by the LOS model correction algorithm and therefore must filter its input for
outliers prior to computing the statistics. Also unlike geodetic characterization, geometric
characterization includes an option to write out the measured offsets for those GCP declared as valid
by the outlier test. This makes it possible to capture the outlier test results for individual GCPs for
further analysis.

Figure 1 shows the architecture for the Geometric Characterization algorithm.

/ ODL /Lb Retrieve Parameters

v
Measured
- Get Measured GCPs

¥

Remove Outliers

v

Calculate
Statistics

v

Write Residual
Statistics

ges_idual v
tatistics /¢ Write GCP Residuals

(if requested)

Figure 1. Geometric Characterization Algorithm Architecture

The geometric accuracy assessment algorithm consists of three stages:
Stage 1 - read processing parameters and load GCP data.
Stage 2 - use the Student t-distribution test to perform outlier filtering on the GCPs.
Stage 3 - compute the mean, standard deviation, RMSE, and correlation coefficient statistics for
the valid GCPs, and generate the report file and characterization database outputs.
In practice, stages 2 and 3 are somewhat overlapped as it is necessary to compute mean and
standard deviation statistics on the GCP set as part of the t-distribution outlier test.

Stage 1 - Load Processing Parameters and GCP Measurements
Stage 1 processing reads the processing parameters from the input ODL file and loads the GCP data
from the measured GCP file.



LDCM-ADEF-001
Version 3

Get Geometric Characterization Parameters Sub-Algorithm (new)

Read the parameters for geometric characterization from the input ODL parameter file. Also read the
Level 1T image metadata to retrieve the WRS path/row, acquisition date, and pixel size for all bands
in the image.

Get GCP Measurements Sub-Algorithm

This function reads the latitude, longitude, band number, GCP source, and correlation status flags as
well as the along- and across-track offset measurements for each GCP from the measurement file
created by the GCP correlation algorithm. It retrieves all of the measured GCPs for subsequent
correlation flag and outlier filtering. Each GCP record is loaded into a data structure containing the
fields listed in Table 1 of the prototype section.:

The measured GCP line and sample offsets are scaled to units of meters using the pixel size read
from the L1T metadata for the measured band. The fields required for stage 2 and 3 processing are:
1. PointID
2. GCP Latitude
3. GCP Longitude
4. GCP Height
5. Line Offset Scaled to Meters
6. Sample Offset Scaled to Meters
7. Valid GCP (Correlation and Outlier) Flag
8. L1T Band Number
9. L1T SCA Number (usually 0 for SCA-combined images) (see note #4)
10.GCP Source

Stage 2 - Filter GCP Outliers

Stage 2 processing identifies those GCP measurements classified as outliers. The outlier set is
initially identified as those GCPs flagged as image correlation failures. A statistical t-distribution outlier
test is applied iteratively to the remaining valid GCPs, removing any newly identified outliers at the
end of each iteration, until no new outliers are found.

Remove GCP Outliers Sub-Algorithm (new)

This function removes the GCP records flagged as outliers from the valid GCP set. Records with the
correlation flag field set to O are outliers. The initial valid GCP set are those GCPs that were flagged
as successful correlations. The Student t-distribution outlier test is then performed to identify
additional outlier GCPs based on the magnitude of their offsets relative to the mean offsets for the
entire valid set.

Student-T Outlier Test Sub-Algorithm

Given a tolerance value, outliers are removed within the data set until all values deemed as “non-
outliers” or “valid” fall inside the confidence interval of a T-distribution. The tolerance, or probability
threshold for the associated confidence interval, is specified per run and usually lies between 0.9-
0.99. The default value is 0.95. The number of degrees of freedom of the data set is equal to the
number of valid data points minus one. The steps involved in this outlier procedure are as follows:

1) Calculate mean and standard deviation of valid GCP data set for both the line and sample
directions.



LDCM-ADEF-001
Version 3
2) Find largest offset and compare it to outlier threshold.

a) Find two tailed T-distribution (T) value for current degree of freedom and confidence
level specified a. See the T-Distribution Confidence Interval Computation discussion
below for details on how the T-distribution confidence interval limit value (T) is
computed based on the specified probability threshold (o). Note that this must be
recomputed for each iteration since the number of degrees of freedom changes as
outliers are removed.

b) Calculate largest deviation from the mean allowable for the specified degree of
freedom and a:

Aline = Oline* T

Asample = Osampie* T
Where:

Oiine = Standard deviation of valid line offsets

Osample = Standard deviation of valid sample offsets

c¢) Find valid data point that is farthest from the mean.

max line; = MAX{ line offset - mean line offset}

max sample; = MAX{ sample offset - mean sample offset}
Where:

The maximum is found from all valid offsets

i is the tie-point number of max line

] is the tie-point number of max sample

d) If valid data point that is farthest from the mean is greater than the allowable A then
the valid point is flagged as outlier.
if max line; > Aline or max sample; > Asample then
if( max sample;j / Osampie > Max line; / Ojine )
tie-point j is marked as an outlier
else
tie-point i is marked as an outlier
else no outliers found

3) Repeat 1 and 2 above until no outliers are found.

T-Distribution Confidence Interval Computation
The probability density function (pdf) for the t-distribution is:

5 \(r1)/2
NThe, (1+ tj
2 r

where: r = the number of degrees of freedom (n-1)
I' = the gamma function

fo ()=

As pointed out in "Numerical Recipes in C", it is often more convenient (and safer) to compute the
logarithm of the gamma function as the gamma function values can get quite large and it is often
ratios of gamma functions (as here) that are of interest. The t-distribution pdf can be reformulated as:



LDCM-ADEF-001
Version 3

(1) =e'®
u(t):|nr(r;1)—'”(“) |r() r+d [1+$J

2
where: InI" = the logarithm of the gamma function

"Numerical Recipes in C" provides a routine for computing InI" called gammin (ref. page 214 of the
2nd edition). The gammln function is used in the reformulated t-distribution pdf shown above to
compute the value of the pdf for a given t and degrees of freedom (r).

Using the t-distribution pdf we compute the confidence level by numerical integration:
1. Initialize the integration, setting the integration step size to 0.001.:
a. step=0.001
b. sum=0
c. target = o/2 (half the probability threshold since we're only integrating the positive half of
the distribution)
d. t=0
e. delta = step*(t_pdf(t,dof) + t_pdf(t+step,dof))/2
2. lterate the integration steps until the sum reaches the target:
while( sum+delta < target )
a. sum =sum + delta
b. t=t+step
c. delta = step*(t_pdf(t,dof) + t_pdf(t+step,dof))/2
3. Solve for the At value to exactly reach target, assuming the pdf is linear over the step size:
a. a= (t_pdf(t+step,dof) - t_pdf(t,dof))/2/step
b. b =t_pdf(t,dof)
C. C=sum - target
d. if (|a] >0) At = (-b + sqrt( b? - 4ac ))/2/a (the quadratic formula)
elseif (|b|>0) At=-c/b
else At=0
4. Compute the final T value: T =1+ At

Stage 3 - Calculate GCP Statistics and Create Output
The third stage of processing calculates the summary statistics for the final valid GCP set and
generates the output geometric accuracy report and characterization database outputs.

Analyze GCP Residuals Sub-Algorithm

This function calculates the mean, root mean square error (RMSE), and standard deviation of the
along- and across-track GCP residuals as well as the correlation coefficient between the across- and
along-track residuals. The statistics are computed in the following process:

a) Calculate GCP statistics
al) Calculate total number of GCPs used (count of valid GCPs)
a2) Calculate mean latitude of GCPs used
a3) Calculate mean longitude of GCPs used

b) Calculate offset statistics
b1) Calculate mean of line offsets



LDCM-ADEF-001
Version 3
b2) Calculate mean of sample offsets
b3) Calculate RMSE of line offsets
b4) Calculate RMSE of sample offsets
b5) Calculate standard deviation of line offsets
b6) Calculate standard deviation of sample offsets
b7) Calculate correlation coefficient between line and sample offsets

The following equations are used to perform these calculations, with X being the parameter for which
statistics are calculated:

Mean:
1 numGCP

mean — .~~~y Xi
numGCP “3

RMSE:

1 numGCP

X B X.

RMS \/numGCP ; '
Standard Deviation:

1 numGCP ) )
X = |—= X% |[-numGCP* X
StdDev \/numGCP—l[( |Z:1: i j mean j

Correlation Coefficient:
numGCP

PP

1
(numGCP _1) XSthevYSthev

i=1

XYoo = [

Output Geometric Statistics Sub-Algorithm

This function creates the output geometric report file and writes the statistics computed from the GCP
offsets to the output file. Note that the output of trending data to the characterization database is
performed by the geometric characterization main procedure.

Write Geometric Statistics Sub-Algorithm
This function writes the standard report file header and then writes the GCP offset statistics to the
ASCII output file.

Write GCP Residuals Sub-Algorithm

If the option to write the valid GCP measurements to the output report file is selected, this sub-
algorithm is invoked to loop through the GCP list, writing those with the outlier/valid flag set to 1 to the
output report file. The individual GCP measurements are not written to the characterization database.
The following fields are written:

Point ID

GCP Latitude (in degrees)

GCP Longitude (in degrees)

GCP Height (in meters)

Line Offset (scaled to meters)

arwnE



LDCM-ADEF-001
Version 3
6. Sample Offset (scaled to meters)
7. L1T Band Number
8. L1T SCA Number (will be 0 for SCA-combined images) (see note #4)

Algorithm Output Details

The geometric accuracy assessment algorithm outputs are summarized in Table 5 below. All fields
are written to the output report file (subject to the GCP residual output flag setting) but only those with
"Yes" in the "Database Output” column are written to the characterization database. Note that the first

eleven fields listed constitute the standard report header.

Field Description Database
Output

Date and time Date (day of week, month, day of month, year) Yes
and time of file creation.

Spacecraft and LDCM and OLI Yes

instrument

source

Processing EROS Data Center SVT (see note #5) Yes

Center

Work order ID Work order ID associated with processing (blank if Yes
not applicable)

WRS path WRS path number Yes

WRS row WRS row number Yes

Software version | Software version used to create report Yes

Off-nadir angle Scene off-nadir roll angle (in degrees) Yes

Acquisition type | Earth, Lunar, or Stellar (only Earth-viewing Yes
scenes are used for geometric characterization)

LORp ID Input LORp image ID Yes

L1T image file Name of L1T used to measure GCPs No

Acquisition date | Date of L1T image acquisition Yes

GCP source Source of GCPs (GLS or DOQ) Yes

Pixel size L1T image pixel size (for measured band) in Yes
meters

Number of valid Number of GCPs accepted as valid Yes

points

Mean GCP Mean latitude of valid GCPs (degrees) Yes

latitude

Mean GCP Mean longitude of valid GCPs (degrees) Yes

longitude

Line offset mean | Mean of line offsets scaled to meters Yes

Sample offset Mean of sample offsets scaled to meters Yes

mean

Line offset RMSE | RMSE of line offsets scaled to meters Yes

Sample offset RMSE of sample offsets scaled to meters Yes

RMSE

Line offset Standard deviation of line offsets scaled to meters Yes

standard

deviation




Sample offset Standard deviation of sample offsets scaled to Yes
standard meters

deviation

Correlation Correlation coefficient between line and sample Yes
coefficient offsets (dimensionless)

If the residual For each valid GCP:

output option is

selected:

Point ID GCP ID (see GCP Correlation ADD for format) No
GCP Latitude GCP WGS84 latitude in degrees No
GCP Longitude GCP WGS84 longitude in degrees No
GCP Height GCP WGS84 ellipsoid height in meters No
Line Offset Measured line offset scaled to meters No
Sample Offset Measured sample offset scaled to meters No
L1T Band Band in which GCP was measured No
Number

L1T SCA Number | SCA in which GCP was measured (0 for SCA- No

combined images) (see note #4)

Table 5: Geometric Accuracy Assessment Output Details

Accessing the Geometric Accuracy Characterization Database
Though not part of the formal geometric accuracy assessment algorithm, some comments regarding
the anticipated methods of accessing and analyzing the geometric accuracy results stored in the
characterization database may assist with the design of the characterization database.

LDCM-ADEF-001
Version 3

The database output from the geometric accuracy assessment algorithm will be accessed by a
statistical summary analysis tool that queries the characterization database to retrieve geometric
accuracy results from multiple scenes. Summary mean and RMSE statistics for the scene results will
be calculated and output in a report containing a comma-delimited table of the retrieved trending
results as well as the summary statistics.

The geometric results would typically be queried by acquisition date, scene off-nadir angle, WRS
path/row, and/or GCP source. The most common query would be a combination of GCP source,
scene off-nadir angle, and acquisition date range, for example, selecting all of the GLS-derived

results, from nadir scenes, for a given calendar quarter:

GCP_Source ="GLS"
Off_Nadir_Angle is between -0.5 and 0.5
Acquisition_Date is between 01APR2012 and 30JUN2012

The summary mean and RMSE statistics would be calculated from the mean and RMSE results for
the individual scenes returned as:

Mean,, =

RMSE, ,, = \/

numScene ‘3

1 numsScene

> Mean,

numScene

ZRMSEiZ/numScene

i=1



LDCM-ADEF-001
Version 3

The query results would be formatted in a set of comma-delimited records (for ease of ingest into
Microsoft Excel), one record per scene. Each record would contain all of the fields written to the
characterization database (items with "Yes" in the rightmost column of Table 5 above). A header row
containing the field names should precede the database records. Two trailer rows, one containing the
summary statistic names (Net Line Offset Mean, Net Sample Offset Mean, Net Line Offset RMSE,
Net Sample Offset RMSE) and the second containing the comma-delimited summary statistic values,
should follow the database records.

7.2.6.7 Prototype Code

The correlation or mensuration process for the Geometric Accuracy Assessment ADD is the same as
that listed in the GCP Correlate ADD. The GCP Correlate ADD should be referenced for both the
procedure and prototype for that portion of the Geometric Accuracy Assessment algorithm. The
outlier rejection prototype is the only portion of the Geometric Accuracy Assessment ADD that is
discussed in this document.

Input to the correlation and outlier rejection executables are ODL files. These ODL files, called
geometric.odl and tdist.odl, are listed in the test data directory. Output from the correlation process
(gcpcorrelate) is an ASCII file containing measured offsets between the search and reference data
files. Output from the outlier rejection process (tdist) is several files; one is a reformatted version of
the input file, a second is a file containing the correlation points flagged as outliers, a third is a set of
statistics calculated on the valid correlation points, a fourth is a set matching the output listed in table
5 of this ADD. Also under the test directory is a perl script that will reformat the output created from
gcpcorrelate into the expected format of tdist. The tdist function is also used by the Image Accuracy
Assessment and Band Accuracy Assessment ADDs. These processes have a slightly different
output file format than the gcpcorrelate process, thus the need to reformat the gcpcorrelate output file
using the perl script.

The prototype code was compiled with the following options when creating the test data files:
-g -Wall -march=nocona -m32

Main driver (tdist)

Driver for outlier rejection process. Calls functions to read ODL parameters (getpar), read unfiltered,
and reformatted, gcpcorrelate output (get_gcpdata), loops on SCAs and band combinations filtering
outliers, writes output files (put_gcpdata, put_resdata, put_gcpstats). These output files include a
reformatted gcpcorrelate output file, a reformatted gcpcorrelate output file with outliers flagged, and a
statistics file of the final filtered results.

Get input parameters (getpar)

Parses ODL file for the following input parameters; t-student outlier tolerance, residuals output file
name, input file name (reformatted output from gcpcorrelate), the output statistics file name, a switch
for combining statistics of a SCA separated image file, and a switch for printing valid individual points
within one of the requested output files.

Read input data file (get_gcpdata)

Reads either an Image Accuracy Assessment or Band Accuracy Assessment formatted file. These
files contain the correlation results between a given set of source or image files. All relevant
information needed for assessment of the correlation results is stored within the GCPDATA structure.



LDCM-ADEF-001
Version 3
Filter outlier (filter_outliers)
Performs a student-t outlier rejection on a given set of correlation points.

Calculate the confidence level for a two-tailed t-distribution (xx_t_conf)

Calculates and returns the threshold value corresponding to the confidence level of a two-tailed t-
distribution with a specified number of degrees of freedom. Note that this function replaced the
historical t_conf module that was present in the ALIAS tdist code.

Calculate the value of a t-distribution probability density function (PDF) at a given point (t_pdf-
contained within file xxx_t_conf)
Needed for calculating the confidence level of the student-t test.

Calculate the natural log the gamma function (gammin - contained within file xxx_t_conf)
Needed for calculating the confidence level of the student-t test. Specifically, used for estimating the
PDF of the t-distribution.

Write out reformatted input file (put_gcpdata)
Creates file of original gcpcorrelate results only in a reformatted output context. Outliers are not
flagged.

Write out reformatted input file with outliers’ flagged (put_resdata)
Creates file of original gcpcorrelate results only in a reformatted output context. Outliers are flagged.

Write out statistics file (put_gcpstats)

Creates a statistics file of filtered correlation results. Results are calculated for both the line and
sample directions; mean, maximum, minimum, average, median, standard deviation, and root mean
square (RMS) error. Median is calculated through compute_median, all other statistics are calculated
within put_gcpstats. Statistics are split by both band combination and SCA if necessary.

Write out accuracy assessment file (put_geostats)

Creates a geometric accuracy assessment file. Calls library functions to calculate mean, standard
deviation, root mean error, and correlation coefficient. Will also print out individual valid GCPs, or
correlation locations, if requested.

Compute median of filtered correlation results (compute_median)

Computes median of filtered correlation results. Values are sorted using a heap sort method, the
middle element of heap sort is chosen as the median value. A value for both the line and sample
direction is calculated.

Create LDCM “like” output header (output_header.c)
Creates basic LDCM output header information within a file.

Sort correlation results (heapsort)
Sort a given set of values using a heap sort methodology.

Discussion on prototype, and final, report file formats

As discussed above, the prototype for Geometric Accuracy Assessment creates five output files
during processing. This level of reporting is not necessary for final implementation. The file created
from tdist that contains the same information as the input and contains the .out extension is not



LDCM-ADEF-001
Version 3
necessary for processing. The final statistics listed in the Algorithm Output sections below (Table 1)
shows the reporting and trending that is needed for the Geometric Accuracy Assessment.

The following tables lists the output file formats from the Geometric Accuracy Assessment prototype:

The output from gcpcorrelate processing, containing original unfiltered correlation results, is listed

below. This file is called measured.gcp in the test data directory.

Field Description
GCP Record Fields: One set per GCP
Point ID GCP ID

GCP chip line location

Line location of GCP within chip

GCP chip sample location

Sample location of GCP within chip

GCP latitude

GCP WGS84 latitude in degrees

GCP longitude

GCP WGS84 longitude in degrees

GCP height

GCP WGS84 ellipsoid height in meters

Predicted GCP image line

Predicted line location of GCP in L1G image

Predicted GCP image
sample

Predicted sample location of GCP in L1G image

GCP image line offset

Measured line offset from predicted location

GCP image sample offset

Measured sample offset from predicted location

Correlation success flag

Flag 0 = correlation failure, 1 = success

Correlation coefficient

Measured correlation coefficient (new)

Search band number

L1G band number used

Search SCA number

L1G SCA where GCP was found

Chip source

GCP source (DOQ or GLS or TM6)

Table 1. Output From GCPCorrelate

The output format created from the perl script meas2char2.pl is listed below. This file is a
reformatting of the gcpcorrelate output file, reformatted to match the output from the Image Accuracy
Assessment ADD. This format is one of the two acceptable formats to the tdist function. This file has
been referenced as the Data File (.dat extension) in the Image Accuracy Assessment ADD and is

called geometric.dat in the test data directory.

Field

Description

Date and time

Date (day of week, month, day of month, year) and time
of file creation.

Spacecraft and LDCM
instrument source
Processing System IAS

Work order ID

Work order ID associated with processing (blank if not
applicable)

WRS path/row

WRS path and row

Software version

Software version used to create report

LOR image file

LOR image file name used to create L1T

Processed image file
name

Name of L1T used to create report




LDCM-ADEF-001
Version 3

Reference bands

Reference bands used in image assessment

Search bands

Search bands used in image assessment

Heading for individual
tie-points

One line of ASCII text defining individual tie-point fields.

For each tie-point:

Tie point number

Tie-point index/number in total tie-point list

Reference line

Tie-point line location in reference image (band)

Reference sample

Tie-point sample location in reference image (band)

Reference latitude

Tie-point latitude location

Reference longitude

Tie-point longitude location

Reference elevation

Elevation of tie-point location

Search line Tie-point line location in search image

Search sample Tie-point sample location in search image

Delta line Measured offset in line direction

Delta sample Measured offset in sample direction

Outlier flag 1=Valid, 0=Outlier

Correlation Correlation peak coefficient from correlation process
Coefficient

Reference band

Reference band number

Search band

Search band number

Reference SCA

SCA number that reference window was extracted from

Search SCA

SCA number that search window was extracted from

Search image

Name of search image

Reference image

Name of reference image

Table 2. Data File Output from TDIST

The file format for the correlation results with outliers flagged is listed in the table below. This file has
been referenced as the Residuals File (.res extension) in the Image Accuracy Assessment ADD.
This file is created from the tdist executable. There is also a file with the same name as this
Residuals File with an .out extension which is also created from the tdist process. This file has the
same format as the Residuals File but does not have the outliers flagged. These files are called
geometric.res and geometric.out respectively in the test data directory. These files will have the
format as that listed below.

Field

Description

Date and time

Date (day of week, month, day of month, year) and time of
file creation.

Spacecraft and LDCM

instrument source

Processing System IAS

Work order ID Work order ID associated with processing (blank if not
applicable)

WRS path/row

WRS path and row

Software version

Software version used to create report

LOR image file

LOR image file name used to create L1T

Processed image file
name

Name of L1T used to create report

Number of records

Total number of tie-points stored in file




LDCM-ADEF-001
Version 3

Heading for individual
tie-points

One line of ASCII text defining individual tie-point fields.

For each band
combination

Combination header

Number of points in combination, reference band number,
search band number.

For each tie-point:

Tie point number

Tie-point index/number in total tie-point list

Reference line

Tie-point line location in reference image (band)

Reference sample

Tie-point sample location in reference image (band)

Reference latitude

Tie-point latitude location

Reference Tie-point longitude location

longitude
Reference Elevation of tie-point location

elevation
Search line Tie-point line location in search image
Search sample Tie-point sample location in search image
Delta line Measured offset in line direction
Delta sample Measured offset in sample direction
Outlier flag 1=Valid, 0=Outlier

Reference band

Reference band number

Search band

Search band number

Reference SCA

SCA number that reference window was extracted from

Search SCA

SCA number that search window was extracted from

Search image

Name of search image

Reference image

Name of reference image

Table 3. Filtered Data Points From TDIST

The format of the statistics file for the filtered correlation results are listed below. This file has been
referenced as the Statistics File (.stat extension) in the Image Accuracy Assessment ADD. This file is
created from the tdist executable and is called geometric.stat in the test directory.

Field

Description

Date and time

Date (day of week, month, day of month, year) and time of
file creation.

Spacecraft and LDCM
instrument source
Processing System IAS

Work order ID

Work order ID associated with processing (blank if not
applicable)

WRS path/row

WRS path and row

Software version

Software version used to create report

LOR image file

LOR image file name used to create L1T

Processed image file
name

Name of L1T used to create report

t-distribution threshold

Threshold used in t-distribution outlier rejection

For each band
combination

Reference band

Reference band of statistics




LDCM-ADEF-001
Version 3

Search band

Search band of statistics

SCA

SCA number of search image

Total tie-points

Total number of tie-points for band

Correlated tie-points

Number of tie-points that successfully correlated for band

Valid tie-points

Total number of valid tie-points for band after all outlier
rejection has been performed

For both line and
sample direction:

All statistics are given in terms of pixels

Minimum offset

Minimum offset within all valid offsets

Mean offset

Mean offset of all valid offsets

Maximum offset

Maximum offset within all valid offsets

Median offset

Median offset within all valid offsets

Standard Standard deviation of all valid offsets
deviation

Root-mean- Root mean squared offset of all valid offsets
squared

Table 4. Statistics File From TDIST

The final output is the Geometric Accuracy Assessment file and follows the format for the Geometric
Accuracy Assessment Algorithm shown in table 5 of the Algorithm Output Details section. Most of
these fields are drawn from items also stored with table 1-4 above and are italicized within the tables
themselves. This redundancy is from historical aspects of the original code that the prototype code
was drawn from.

7.2.6.8 Maturity

The main differences between the geodetic characterization and geometric characterization
algorithms are:

1. Different input data formats (precision residual file vs. GCP measurement file).

2. Only one set of GCP measurements to analyze for geometric assessment.

3. Need to detect and reject outliers for geometric assessment.
As with the geodetic characterization algorithm, a field to capture the GCP source (GLS vs. DOQ) has been
added.

7.2.6.9 Notes

Some additional background assumptions and notes include:

1. The RMSE GCP statistics capture the absolute geometric accuracy performance of the LDCM
output L1T product.

2. The trending output from this algorithm will be accessed by a statistical summary analysis tool
that queries the trending database to retrieve geometric accuracy results from multiple scenes.
Summary statistics (mean, standard deviation, and RMSE) for the individual scene results will
be calculated and output in a report containing a comma-delimited table of the retrieved
trending results as well as the summary statistics.

3. The GCPs in the GCP repository (part of the Infrastructure Element) will be flagged as either
“control” points, to be used for LOS model correction, or “validation” points, to be used for
geometric accuracy assessment. Either the utility that extracts control points from this
repository or the GCP correlation algorithm will extract the desired GCP set. In either case,
geometric accuracy assessment would operate on the resulting output from GCP correlation.



LDCM-ADEF-001
Version 3

The “control” set would contain the majority of the points. The “validation” flag would only be
used in areas where more than some minimum threshold number of GCPs are available.
These flags would be set by the CalVal Team at the time the GCP repository was loaded and
could be adjusted, if necessary, thereafter.
. The GCP residual output option includes writing the GCP SCA number to the output report file.
Under normal conditions this field will always be zero, indicating that GCP mensuration was
performed on an SCA-combined image. For anomaly investigation and testing purposes it may
be desirable to perform GCP mensuration on an SCA-separated image. For example, to use
geometric accuracy assessment to analyze the GCP correlation output for a scene that failed
LOS model creation for no immediately obvious reason. Thus, support for tracking the SCA
where GCPs were measured is retained in this algorithm.
. A configuration table (system table) should be provided for each installation of the algorithm
implementation to convey site-specific information such as the processing center name (used
in the standard report header), the number of processors available (for parallel processing
implementations), etc. This takes the place of the heritage system table which also contained
certain algorithm-related parameters. Anything related to the algorithms has been moved to
the CPF for LDCM.
. It is worth noting that the band to process was added to the input table of Geometric Accuracy
Assessment v3.0 ADD. The comment was made during discussions of the GCP Correlate
v3.0 ADD to add this as an option to the input parameters. The prototype, for GCP Correlate
and Geometric Accuracy Assessment, will default to the first band present within the image file
as the band to process if the PAN band is not present. Adding the band number as an input
makes the application more robust and can be added during the implementation phase of the
algorithm.



LDCM-ADEF-001
Version 3
7.2.7 OLI Geodetic Accuracy Assessment (L1Gs)

7.2.7.1 Background/Introduction

The OLI geodetic accuracy assessment, or geodetic characterization, algorithm analyzes the results
of the ground control point (GCP) measurements created by the LOS model correction algorithm to
assess the geolocation accuracy of the systematically terrain corrected OLI L1G image used for GCP
mensuration. Statistics are computed for the original (unadjusted) GCP measurements and for the
final (best fit) adjusted GCP locations. In both cases, GCPs identified as outliers by the LOS model
correction algorithm are excluded. The “pre-fit” results, based upon the unadjusted GCP
measurements, provide a measure of LDCM pointing, position, and alignment knowledge as reflected
in the measured geolocation accuracy. The “post-fit” results, based on the control point residuals after
the precision LOS model corrections are applied, provides a measure of how well the precision
correction process is working and an indication of the quality of the derived model corrections. This is
particularly important in the LDCM environment in which precision correction using GCPs will be
attempted on all scenes, even those with cloud cover, and it will be necessary to identify those cases
where the control point matching and precision correction process has failed. The LOS model
correction algorithm will perform these tests operationally and the geodetic accuracy assessment
algorithm will not be executed for scenes where the precision correction process is known to have
failed. The geodetic accuracy assessment results will help identify cases where a substandard
precision correction solution has been accepted, thereby assisting in tuning the parameters used to
detect precision correction failures.

Geodetic accuracy assessment will be performed as part of the processing flow for the standard L1T
scenes, processed using GCPs extracted from the Landsat Global Land Survey (GLS) data. It will
also be performed during calibration site processing, using the more accurate GCPs derived from
digital orthophoto quad (DOQ) control. Though the geodetic accuracy assessment process is the
same for both of these uses, the results will be trended separately as the GLS results will be used to
assess the quality of the GLS global control as well as the accuracy of the LDCM products (see note
#2), whereas the high-accuracy DOQ control will be used to assess the performance of the
operational LDCM navigation and geometric calibration (see note #1).

The OLI geodetic accuracy assessment algorithm is derived from the ALI geodetic characterization
algorithm which was, in turn, derived from the corresponding Landsat 7 algorithm. Since this
algorithm primarily involves computing statistics on control point measurements, the logic is
somewhat sensor independent.

7.2.7.2 Dependencies

The OLI geodetic accuracy assessment algorithm assumes that the LOS model correction algorithm,
and its predecessors, has been executed to create an output GCP residuals file. This file is parsed by
the geodetic accuracy algorithm to extract the residuals for all non-outlier GCPs for both the first
(unadjusted) and last (final) iterations of the LOS model correction process. Note that these residuals
are recorded as along- and across-track offsets by the LOS model correction algorithm.

7.2.7.3 Inputs

The geodetic characterization algorithm uses the inputs listed in the following table. Note that some of
these “inputs” are implementation conveniences (e.g., using an ODL parameter file to convey the
values of and pointers to the input data).

Algorithm Inputs

ODL file




Input residual file name

Output geodetic report file name

Level 1G mensuration image file name

LOR ID (for trending)

Work Order ID (for trending)

Trending flag (on/off)

Level 1G Image File Contents (see note #5 and Resampling ADD for
details)

WRS Path/Row (for trending) from image metadata/DDR

Scene acquisition date (for trending) from image metadata/DDR

Scene acquisition type (for trending) from image metadata/DDR

Scene roll angle (for trending/report file) from image metadata/DDR

Residual File Contents (see LOS Model Correction ADD for details)

GCP Latitude/longitude/height

GCP outlier/valid flag

Cross-track and along-track pre-fit residuals

Cross-track and along-track post-fit residuals

GCP source (GLS or DOQ) (new)

7.2.7.4 Outputs

Geodetic Accuracy Report (output file and trending) (see Table 1
below for additional details)

Processing Information

Processing Date and Time

Processing Center/Location

Processing Software Version

Processed L1G Image File Name

Data Set Information

Spacecraft and Instrument Source (LDCM/OLI)

Work Order ID

WRS Path/Row

Roll Angle (new)

Acquisition Type (Earth, Lunar, Stellar) (will always be Earth)

LORp ID

Acquisition Date (new)

GCP Information

GCP Source (new)

Number of valid GCPs

Mean latitude and longitude of GCPs

Pre-Fit Statistics

Mean, RMSE, Standard Deviation, Correlation Coefficient

Post-Fit Statistics

Mean, RMSE, Standard Deviation, Correlation Coefficient

7.2.7.5 Options
Trending on or off.

7.2.7.6 Procedure

LDCM-ADEF-001
Version 3

Geodetic characterization is performed on the precision residual file. See the LOS Model Correction
Algorithm Description Document (ADD) for further details on the correction process and its results.
Geodetic characterization calculates statistics for the post and pre-fit residuals of the precision
correction process. This process allows analysis of the accuracy of LOS model and its performance



LDCM-ADEF-001
Version 3
when processing image data using only the spacecraft ancillary data, as compared to applying
ground control.

Since the LOS model correction algorithm detects and flags outlier GCPs, the work of the geodetic
accuracy assessment algorithm is limited to reading and parsing the output residual file created by
LOS mode correction, and computing summary statistics for the results of the first and last solution
iterations. These results are written to a report file along with standard header fields, some of which
are extracted from the L1G image metadata. Figure 1 shows the architecture for the geodetic
characterization algorithm.

\ 4

ODL Retrieve Parameters

Precision v :
Residuals /" Get Residuals
v

Remove Outliers

v

Calculate Pre-fit
Statistics

v

Calculate Post-fit
Statistics

v

L1G Write Residual
Image Statistics
Residual
Statistics

Figure 1. Geodetic Characterization Algorithm Architecture

7.2.7.7 Prototype Code

Inputs to the executable are an ODL parameter file, an ASCII residual file generated by the LOS
correction algorithm, and the L1G image used to measure the GCPs. Note that the L1G image is only
used to provide metadata for inclusion in the output report. The output is an ASCII report file
containing a standard header that identifies the data set analyzed, and the pre-fit and post-fit GCP
residual summary statistics for the GCPs used in the precision correction solution. The prototype
code also accesses two environment variables to populate fields used in the standard report header.
These are IAS_REL which contains the IAS software version number, and IAS_SITE which contains
a text string identifying the processing center.

The prototype code was compiled with the following options when creating the test data files:
-g -Wall -march=nocona -m32

Get Geodetic Characterization Parameters Sub-Algorithm (get_geod_char_parms)

This function gets the parameters for geodetic characterization from the input ODL parameter file. It
also reads the Level 1G image metadata to retrieve the WRS path/row, acquisition date, acquisition
type, and scene roll angle.

Read Grid Parameters Sub-Algorithm (read_grid_parm)



LDCM-ADEF-001
Version 3

This function reads the standard parameters common to all applications from the input ODL
parameter file. These include the script name, Level OR ID, work order ID, and trending on/off flag.

Get Residual Sub-Algorithm (xxx_get_residual)
This function reads the along and across-track residual components for each GCP from the residual
file created by the LOS model correction algorithm. It retrieves all of the residuals for a specified
iteration. If a negative iteration number is provided it retrieves the data for the final iteration. This sub-
algorithm is invoked twice, once to retrieve the residuals for iteration O (pre-fit) and once to retrieve
the final iteration residuals (post-fit). For each invocation the entire input residual file is scanned until
the selected iteration header line is found (e.g., "lteration 0" or "Final Iteration™). Then each GCP
record for that iteration is loaded into a residual data structure containing the fields:
Point Id
Predicted L1G Line
Predicted L1G Sample
GCP Observation Time (seconds)
GCP Latitude (degrees)
GCP Longitude (degrees)
GCP Height (meters)
Across-Track View Angle (degrees)
Across-Track Residual (meters)

10 Along-Track Residual (meters)

11.Image Y Residual (meters)

12.Image X Residual (meters)

13.Outlier/Valid Flag (0 = outlier, 1 = valid)

14.GCP Source (DOQ or GLS)
Note that the inclusion of GCP source in the precision residual file and in the input residual structure
is new for LDCM.

©CoNo~whE

Remove Outliers Sub-Algorithm (remove_outliers)

This function removes the residual records flagged as outliers from the GCP residual information and
places the data in buffers to be accessed by later routines. Records with the outlier/valid flag field set
to O are outliers.

Analyze GCP Residuals Sub-Algorithm (analyze_GCP_res)

This function calculates the mean, root mean square error (RMSE), and standard deviation of the
along- and across-track GCP residuals as well as the correlation coefficient between the across- and
along-track residuals. The statistics are computed in the following process:

a) Calculate GCP statistics
al) Calculate total number of GCPs used (count of valid GCPs)
a2) Calculate mean latitude of GCPs used
a3) Calculate mean longitude of GCPs used

b) Calculate pre-fit statistics
b1) Calculate mean of cross-track residuals
b2) Calculate mean of along-track residuals
b3) Calculate RMSE of cross-track residuals
b4) Calculate RMSE of along-track residuals
b5) Calculate standard deviation of cross-track residuals



LDCM-ADEF-001
Version 3
b6) Calculate standard deviation of along-track residuals
b7) Calculate correlation coefficient between along- and cross-track residuals

c) Calculate post-fit statistics
cl) Calculate mean of cross-track residuals
c2) Calculate mean of along-track residuals
c3) Calculate RMSE of cross-track residuals
c4) Calculate RMSE of along-track residuals
c5) Calculate standard deviation of cross-track residuals
c6) Calculate standard deviation of along-track residuals
c7) Calculate correlation coefficient between along- and cross-track residuals

The following equations are used to perform these calculations, with X being the parameter for which
statistics are calculated:

Mean (ALIAS xxx_mean):
1 numGCP

mean — .~~~y Xi
numGCP “3

RMSE (ALIAS xxx_RMSE):
1 numGCP
X = [——— X.
RS \/numGCP ,Z:l: '
Standard Deviation (ALIAS xxx_std_dev):

1 numGCP ) )
X = |[——— X5 |=numGCP* X
StdDev \/numGCP—l[( |Z:1: i j mean )

Correlation Coefficient (ALIAS xxx_corr_coeff):

numGCP
[ Z(Xl - Xmean)(Yi _Ymean)j 1
XYec =

i=1
(numGCP-1) X suape.

StdDev " StdDev

Output Residual Statistics Sub-Algorithm (output_resid_stats)

This function creates the output geodetic report file and writes the statistics computed from the GCP
residuals to the output file. Note that the output of trending data to the characterization database is
performed by the geodetic characterization main procedure.

Write Residual Statistics Sub-Algorithm (write_resid_stats)
This function invokes output_header to write the standard report file header and then writes the
GCP residual statistics to the ASCII output file.

Write Standard Report Header Sub-Algorithm (output_header)
This function collects the input parameters, image metadata, and environment variable values
needed to populate the standard IAS report header and writes the header to the ASCII output file.



LDCM-ADEF-001
Version 3

Algorithm Output Details

The geodetic accuracy assessment algorithm outputs are summarized in Table 1 below. All fields are
written to the output report file. Only those with "Yes" in the "Database Output” column are written to
the characterization database. Note that the first eleven fields listed constitute the standard report
header. Also note that the DEM Source field present in the heritage ALIAS implementation is no

longer required.

Field Description Databas
e
Output
Date and time Date (day of week, month, day of month, year) Yes
and time of file creation.
Spacecraft and LDCM and OLI Yes
instrument
source
Processing Processing center where the output was Yes
Center generated (see note #4).
Work order ID Work order ID associated with processing (blank if Yes
not applicable).
WRS path WRS path number Yes
WRS row WRS row number Yes
Software version | Software version used to create report Yes
Roll angle Scene off-nadir roll angle (in degrees) Yes
Acquisition Type | Earth viewing, Lunar, or Stellar (only Earth- Yes
viewing scenes are used for geodetic
characterization)
LORp ID Input LORp image ID Yes
L1G image file Name of L1G used to measure GCPs No
Acquisition date | Date of L1G image acquisition Yes
GCP source Source of GCPs (GLS or DOQ) Yes
Number of valid | Number of GCPs accepted as valid Yes
points
Mean GCP Mean latitude of valid GCPs (degrees) Yes
latitude
Mean GCP Mean longitude of valid GCPs (degrees) Yes
longitude
Pre-fit along- Mean of along-track iteration O residuals (meters) Yes
track mean
Pre-fit across- Mean of across-track iteration O residuals (meters) Yes
track mean
Pre-fit along- RMSE of along-track iteration 0 residuals (meters) Yes
track RMSE
Pre-fit across- RMSE of across-track iteration O residuals Yes
track RMSE (meters)
Pre-fit along- Standard deviation of along-track iteration O Yes
track standard residuals (meters)
deviation




Pre-fit across- Standard deviation of across-track iteration 0 Yes
track standard residuals (meters)

deviation

Pre-fit correlation | Correlation coefficient between along- and across- Yes
coefficient track iteration O residuals (dimensionless)

Post-fit along- Mean of along-track final iteration residuals Yes
track mean (meters)

Post-fit across- Mean of across-track final iteration residuals Yes
track mean (meters)

Post-fit along- RMSE of along-track final iteration residuals Yes
track RMSE (meters)

Post-fit across- RMSE of across-track final iteration residuals Yes
track RMSE (meters)

Post-fit along- Standard deviation of along-track final iteration Yes
track standard residuals (meters)

deviation

Post-fit across- Standard deviation of across-track final iteration Yes
track standard residuals (meters)

deviation

Post-fit Correlation coefficient between along- and across- Yes
correlation track final iteration residuals (dimensionless)

coefficient

Table 1. Geodetic Accuracy Assessment Output Details

Accessing the Geodetic Accuracy Characterization Database
Though not part of the formal geodetic accuracy assessment algorithm, some comments regarding
the anticipated methods of accessing and analyzing the geodetic accuracy results stored in the
characterization database may assist with the design of the characterization database.

LDCM-ADEF-001
Version 3

The database output from the geodetic accuracy assessment algorithm will be accessed by a
statistical summary analysis tool that queries the characterization database to retrieve geodetic
accuracy results from multiple scenes. Summary mean and RMSE statistics for the pre-fit scene
results will be calculated and output in a report containing a comma-delimited table of the retrieved
trending results as well as the summary statistics.

The geodetic results would typically be queried by acquisition date, roll angle, WRS path/row, and/or
GCP source. The most common query would be a combination of GCP source, roll angle, and

acquisition date range, for example, selecting all of the GLS-derived results, from nadir scenes, for a
given calendar quarter:

GCP_Source ="GLS"
Roll_Angle is between -0.5 and 0.5
Acquisition_Date is between 01APR2012 and 30JUN2012

Since we will be using the roll angle field to detect off-nadir acquisitions, it would be convenient if the
associated query could be specified as a maximum (absolute) number (e.g., 0.5 degrees) rather than
having to specify a plus/minus range.



LDCM-ADEF-001
Version 3

The summary mean and RMSE statistics would be calculated from the pre-fit and post-fitmean and
RMSE results for the individual scenes returned as:

l numScene
———— > Mean,
numScene ‘3

numScene
RMSE,, = \/ > RMSE/ /numScene
i=1

Mean, ., =

The query results would be formatted in a set of comma-delimited records (for ease of ingest into
Microsoft Excel), one record per scene. Each record would contain all of the fields written to the
characterization database (items with "Yes" in the rightmost column of Table 1 above). A header row
containing the field names should precede the database records. Two trailer rows, one containing the
summary statistic names (Net Pre-fit Along-Track Mean, Net Pre-fit Across-Track Mean, Net Pre-Fit
Along-Track RMSE, Net Pre-Fit Across-Track RMSE, Net Post-Fit Along-Track Mean, Net Post-Fit
Across-Track Mean, Net Post-Fit Along-Track RMSE, and Net Post-Fit Across-Track RMSE) and the
second containing the comma-delimited summary statistic values, should follow the database
records.

7.2.7.8 Maturity

1. The computation of GCP statistics is essentially the same as what is currently used in the ALIAS
heritage code, and was used in the Landsat 7 IAS implementation.
2. Afield to capture the GCP source (GLS vs. DOQ) has been added to the GCP residual record.

7.2.7.9 Notes

Some additional background assumptions and notes include:

7. The pre-fit mean and RMSE statistics derived from DOQ control capture the absolute geodetic
accuracy performance of the LDCM system whereas the standard deviation statistics reflect
the relative geodetic accuracy.

8. The post-fit RMSE statistics provide an indication of the absolute accuracy of the output L1T
product but this must be combined with an assessment of the accuracy of the GCP source to
obtain a more realistic estimate of L1T accuracy. L1T accuracy is measured directly by the
geometric accuracy assessment algorithm, which is a variant of the geodetic accuracy
assessment process but is documented as a separate algorithm (see Geometric Accuracy
Assessment ADD).

9. The per-scene post-fit along-track RMSE and post-fit across-track RMSE statistics, derived
from the GLS control used for L1T product generation, would be good candidates for use as
geometric quality metrics. The post-fit RMSE statistics could be extracted from either the
geodetic accuracy assessment report file or the characterization database. In the case of a
LOS model correction failure, fill values would be inserted into these quality fields to indicate
that the registration to the GLS control failed, for example, due to cloud cover.

10. A configuration table (system table) and/or environment variables should be provided for each
installation of the algorithm implementation to convey site-specific information such as the
processing center name (used in the standard report header), the number of processors
available (for parallel processing implementations), etc. This takes the place of the heritage
system table which also contained certain algorithm-related parameters. Anything related to
the algorithms has been moved to the CPF for LDCM.



LDCM-ADEF-001
Version 3
11.The input L1G image is only used to extract selected metadata (noted in the input table) for
inclusion in the output report and trending data. If the required fields are all available in the
LORp data set, it could be used as an input instead of the L1G. Since, unlike the L1G, the
geometry team has no control over the contents of the LORp, we leave this as a design trade
for the operational software.



LDCM-ADEF-001
Version 3

7.2.8 OLI Image Registration Accuracy Assessment Algorithm

7.2.8.1 Background/Introduction

The OLI Image Registration Accuracy Assessment, or image-to-image (121) characterization,
algorithm has two purposes; it can be used to determine the geometric registration of an image to a
particular source image or it can be used to verify the multi-temporal capabilities of the OLI product
generation system.

The 121 characterization process works by choosing locations within the reference and search images,
extracting windows of imagery from each image and performing grey scale correlation on the image
windows. Several criteria are used in determining whether the correlation processing was successful.
These criteria include measured displacement and strength of the correlation peak. The subpixel
location of the measured offset is calculated by fitting a 2" order polynomial around the correlation
surface and solving for the fractional peak location of the fitted polynomial. Once the total offset has
been measured, adding the calculated integer offset to the calculated subpixel offset, for all
successfully correlated tie-points a final t-distribution outlier rejection is performed to produce the set
of all valid measured offsets.

There are two options available for determining tie-point locations in the 12l characterization
algorithm. These options include choosing evenly spaced points in the output space of the imagery
or choosing points based on pre-chosen locations.

The OLI Image Accuracy Assessment algorithm is derived from the corresponding Advanced Land
Imagery (ALI) I2I characterization algorithm used in ALI Image Assessment System (ALIAS). Its
implementation should be very similar to the ALI 121 characterization application. The algorithm will
have to be modified to accommodate LDCM data formats.

7.2.8.2 Dependencies

The OLI 121 algorithm assumes a cloud free L1T has been generated and that a suitable reference
image (OLI or other source) exists for comparison purposes. The L1T needs to be in the SCA
combined format.

7.2.8.3 Inputs

The Image Accuracy Assessment algorithm and its component sub-algorithms use the inputs listed in
the following table. Note that some of these “inputs” are implementation conveniences (e.g., using an
ODL parameter file to convey the values of and pointers to the input data).

Algorithm Inputs Source
Reference image ODL
Search image ODL
Bands to process ODL
Tie point type ODL

Number points in line direction (if tie-point type | ODL
is evenly spaced)

Number points in sample direction (if tie-point ODL
type is evenly spaced)

GCP File Name (if tie-point type is file based) ODL

Correlation window size lines CPF/ODL

Correlation window size samples CPF/ODL




LDCM-ADEF-001

Version 3

Fill range maximum CPF/ODL
Fill range minimum CPF/ODL
Fill percentage CPF/ODL
T-distribution outlier threshold ODL
Output file names

12 residuals file (see Table #2 below for ODL
details)

12I output data file (see Table #1 below for ODL
details)

12I statistics file (see Table #3 below for ODL
details)
Trend flag ODL
LOR/L1R ID
Work Order ID
WRS Path/Row
Trending thresholds (RMS for each line,sample | CPF
per band — See note #5)
Minimum correlation peak CPF/ODL
Maximum displacement CPF/ODL
Correlation fit method (See note #2) CPF

7.2.8.4 Outputs

121 residuals file (See table #2)

12| data file (See table #1)

12I statistics file (See table #3)

121 characterization trending (if trending flag set to yes)

LOR/L1R ID

Work Order ID

WRS Path/Row

Reference source

121 statistics (Min, Mean, Max, Median, RMS, Std. Dev.)

The following processing parameters that are listed in the table above can be overridden if they are
given as fields within the input ODL file; correlation window size, maximum offset, minimum
correlation strength, fill threshold, maximum and minimum file values.

7.2.8.5 Options

Trending on/off switch
Correlation fit method (placeholder, see note #2)
Normalized grey scale or least squares correlation (see note #2)

7.2.8.6 Prototype Code

Input to the executable is an ODL file; output is an ASCII file containing measured offsets between
the input image file and GCP library. The prototype output/input directory contains the input ODL files
needed, the HDF5 input image files, the GCPLIib look-up file, and the CPF.

The prototype code was compiled with the following options when creating the test data files:
-g -Wall -march=nocona -m32

The following are brief descriptions of the main set of modules used within the prototype. It should be
noted that almost all library modules are not referenced in the explanations below. Only those



LDCM-ADEF-001
Version 3
modules within the main i2ichar directory for the prototype and any library modules that were
determined to be important to the explanation of the results, input parameters, or output parameters,
are discussed.

i2i_char

Main driver for the image registration assessment. Calls modules to read input parameters
(get_parms), check image characteristics (compare_metadata), create tie-point locations
(create_tiepts and read_gcps), and perform image registration mensuration (i2i_corr).

get_parms

Reads the parameters from the input ODL parameter file and retrieves the 12| default processing
parameters from the CPF; correlation fit method, minimum correlation peak, maximum allowable
displacement.

i2i_corr

Main driver for image correlation, or image mensuration, process. Driver opens image, calls module
to perform correlation at tie-point locations (process_gcp), and writes out image registration residuals
file (table 1).

process_gcp
Process to perform correlation between one band of the search and reference images. Initializes and
calls correlation libraries, extracts image data from files, calls module ias_math_check_pixels_range
to determine if a given window of imagery contains enough "valid-range" pixels so that mensuration
can be performed.

ias_math_check_pixels_range
Checks to see if percent of pixels within a given buffer is within a set range of values. Range and
percentage is a user defined parameter.

compare_metadata

Checks image file metadata for validity of data with regards to image registration assessment.
Checks include; bands requested for assessment being present, same pixel size between images,
same map projection, projection parameters, projection spheroid, and datum. Messaging is also
present to warn users when the two images to be assessed do not have the appropriate correction
type. Image and band metadata structures are passed back so so that it can be used by other
modules.

create_tiepts
Main driver for generating tie-points based on evenly space tie-point option. Calls module
i2i_det_tiepts.

i2i_det_tiepts

Calculates tie-point locations for evenly spaced tie-point option. Calls module math_calc_poly
(twice) to determine mapping polynomials between map coordinates and line/sample locations for
search and reference images. Calls module xxx_eval to map corner coordinates to line and sample
locations.

math_calc_poly



LDCM-ADEF-001
Version 3
Uses image metadata information to determine mapping polynomial between map coordinates and
line/sample locations for an image file.

read_gcps

Opens GCP ASCII, or within the prototype code the GCPLIb, file. Calls module io_get_gcplib to read
ASCIl GCP (GCPLIb) information. Calls module misc_gcp_Is to map ASCIl GCP (GCPLIib)
geographic locations to search and reference line and sample locations.

io_get_gcplib
Reads GCPLIb file storing GCP information according to requested criteria; absolute, relative, begin
and end date, season, chip source.

misc_gcp_Is
Converts geographic location of GCPs to line and sample location within search image.

read_metadata
Reads file and band metadata for imagery.

7.2.8.7 Procedure

Image-to-image (121) characterization is used to assess the ability to register an OLI data set to
another image data set. 12| characterization performs image correlation between OLI imagery, the
search data set, and a reference image data set. Landsat, reduced resolution DOQ data, or OLI
imagery can be used as a reference data set. When OLI imagery is measured against another OLI
data set acquired at a different date over the same geographic area, 12I measures the ability to
register multi-temporal OLI imagery. Correlation points are chosen either as evenly distributed points
throughout the imagery or at predefined GCP locations. Outliers are first rejected by removing all
measured displacements that lie above a user set threshold or those whose correlation peak is below
a given minimum value. A final outlier rejection is performed on the measured offsets using a
Student-t distribution test. Final statistics, which are reported in the output statistics file and stored in
the database, are calculated based on the valid displacements after the Student-t outlier rejection.
Statistics are calculated for both the line and sample direction independently. An overview of the
algorithm procedure is shown in figure 1.



LDCM-ADEF-001
Version 3

Retrieve
ODL Parameters

A 4

Compare [*
Metadata

/ Reference// Search /
) Y Image Image

: Create
/ Zelis F) Tie-Points

A 4

Process
Tie-Points

/2I Outpu /
F le t
_| Filter Outliers
T-distribution

/I Resu:lu a/
Flle -
Calculate izl
Statistics Statistics
Fi

Figure 1: Image Registration Accuracy Assessment Algorithm Flow Diagram

'

F 3

&

The OLI Image Registration Accuracy Assessment algorithm has heritage in the Landsat 7 (L7) and
Advanced Land Imagery (ALI) Image Assessment Systems (IAS) Image-to-Image Characterization
(121 Char) algorithm/process. The prototype code for OLI Image Registration Accuracy Assessment
will contain many of the same modules that are present in the L7 and ALI IAS 121 Characterization.
The correlation and mensuration modules however are not described within this ADD as they are
already presented in the Ground Control Correlation and Band Registration Accuracy Assessment
ADDs. Those ADDs should be reviewed for any information pertaining to these processes.
Explanations of the methodology of the mensuration and t-distribution outlier rejection processes are
presented in the Band Registration Accuracy Assessment ADD. That ADD should be reviewed for
any information pertaining to these methodologies.

7.2.8.7.1 Stage 1 - Data Input

The data input stage involves loading the information required to perform the image registration
assessment. This includes reading the image files, retrieving the output 121 file names: data,
residuals and statistic files; retrieving or initializing processing parameters: maximum displacement,
fill range, fill threshold, minimum correlation peak, t-distribution threshold, bands to process,



LDCM-ADEF-001
Version 3
correlation window size, trendingthresholds, tie-point method; and if tie-point method is set to file-
based the GCP file name. Once the input file, and if need be the GCP name, has been retrieved the
files and the information stored within them can be opened and read.

7.2.8.7.2 Stage 2 - Create Tie-point Locations

Tie point locations may be determined in an evenly spaced pattern in output space or they may be
read from a GCP file.

Determine Evenly Spaced Tie-points

This tie-point selection process is similar to the Band Registration Accuracy Assessment ADD, Stage
3 - Create Tie-point Locations section Determine Evenly Spaced Tie-points. The difference between
the two processes is that the Image Accuracy Assessment algorithm computes and uses the
bounding area between the search and references for tie-point selection.

Creating Evenly Space Tie-Points Processing Steps

1. Map search corners to reference space

Y, =Y.
search ling, = %141
Py
X, —X
search sample, = — > urel 11

Where

i =0,1,2,3 for the search upper left, upper right, lower right, lower left coordinates
YuLret = Reference upper left Y coordinate

XuLret = Reference upper left X coordinate

Px = pixel size sample direction

Py = pixel size line direction

2. Determine bounding overlapping area.

minimum sample = min(search sample;, reference sample;)
maximum sample = max(search sample;, reference sample;)
minimum line = min(search ling;, reference ling;)

maximum line = max(search line;, reference linej)

3. Calculate step sizes
maximum sample—minimum sample—correlation window samples

spacing X =
M-1
. maximum line —minimum line —correlation window lines
spacing y =
N-1
Where

M = Number of tie-points in sample direction
N = Number of tie-points in line direction

4. Set evenly spaced tie-point locations
4.1 Forj=0to N-2
) ) . .1 correlation window lines . .
tie - point location y[j] = : + j*spacing y




4.2 tie-pointlocation y[N —1] = maximum line —

correlation window lines
2

43 Fori=0toM-2

4.4 tie - point location x[M -1]= maximum sample—

_ correlation window samples

tie - point location x[i] = +i*spacing X

2
correlation window samples

2

Determine File-Based Tie-points
This tie-point selection is based on an input ASCII file containing latitude and longitude locations for
each individual tie-point. These individual locations are converted to line and sample locations within
the search and reference images. These locations then have windows of imagery extracted from the
search and reference images after which displacement between the two windowed images can be
calculated. This file called the GCPLIib within prototype and referred to as the ASCIlI GCP file within

the text of this document.

Create Tie-Point from GCP ASCII (GCPLIib) file Processing Steps.

1. Open GCP ASCII (GCPLib) file.

2. For each GCP

files.

2.1 read GCP (note #1).
Chip ID and name
Latitude and longitude
Projection X, Y, Z

2.2 Convert GCP geographic/projection location to line and sample locations

2.2.1 Convert GCP geographic location to search/reference map
projection. Map projection conversions can be done through General
Cartographic Transformation Package (GCTP).

2.2.2 Convert map projection X and Y locations to line and sample
locations.

Equations:
line = eee —u 1
y
— XGCP

sample = Ko = Xece
P

X

+1

Where

YuL = Upper left Y coordinate of image
XuL = Upper left X coordinate of image
Ycecp = Y coordinate of GCP

Xgep = X coordinate of GCP

P« = Image pixel size in sample direction

LDCM-ADEF-001
Version 3

within image



LDCM-ADEF-001
Version 3
Py = Image pixel in size in line direction

2.2.2.a Convert to line and sample location in search image.
2.2.2.b Convert to line and sample location in reference image.

2.3 Store line and sample locations for search and reference.

3 Close GCP ASCII (GCPLIb) file

7.2.8.7.3 Stage 3. Calculate Individual Point-by-Point Image Displacements

Normalized cross correlation is used to measure spatial differences between the reference and
search windows extracted from the imagery to be compared. The normalized cross correlation
process helps to reduce any correlation artifacts that may arise from radiometric differences between
the two image sources. The correlation process will only measure linear distortions over the
windowed areas. By choosing appropriate correlation windows that are well distributed throughout the
imagery, nonlinear differences between the image sources can be found. This methodology is
explained in the Band Registration Accuracy Assessment ADD. The processes and modules
associated with these calculations are explained in the GCP Correlation and Band Registration
Accuracy Assessment ADDs.

7.2.8.7.4 Stage 4. Removing Outliers Using the t-distribution

Once all the line and sample offsets have been measured and the first level of outlier rejection has
been performed, a check against the maximum allowable offset and the minimum allowable
correlation peak, the measurements are further filtered for outliers using a Student-t outlier rejection.
This methodology, along with the processes and modules that are present within ALIAS, are
explained in the Band Registration Accuracy Assessment ADD. That ADD should be used as a
reference for these items.

Image Accuracy Assessment Processing Steps.
1. For band = Number of OLI bands to process
1.1. For index = Number of tie-points to process

1.1.1. Read current tie-point chip and tie-point location
Set tie-point flag to unsuccessful

1.1.2. Extract search window (of imagery) at tie-point location
1.1.3. Extract reference window (of imagery) at tie-point location

1.1.4. Count number of pixels in reference window that is within fill range.
count=0
For i=0 to number of pixels in correlation window
If reference pixel is > fill min and reference pixel is < fill max
count++



LDCM-ADEF-001
Version 3
1.1.5. Check number of reference pixels counted against fill threshold/percentage.

if count > fill threshold

correlation window size
increment index to next tie-point location

else
continue

1.1.6. Count number of pixels in search window that is within fill range.
count=0
For i=0 to number of pixels in correlation window
If search pixel is > fill min and search pixel is < fill max
count++

1.1.7. Check number of search pixels counted against fill threshold/precentage.

if count > fill threshold

correlation window size
increment index to next tie-point location

else
continue

1.1.8. Perform normalized grey scaled correlation between reference and search windowed
images, calculating correlation surface R (See Band Registration Accuracy Assessment ADD-
Stage 4 Calculate Individual Point-by-Point Band Displacements).

1.1.9. Find peak within correlation surface

Max = R(0,0)

For i=0 to correlation window number of lines -1

For j=0 to correlation window number of samples -1
If R(i,j) > max then

Max = R(i,])
line offset =i
sample offset =

1.1.10. Check correlation peak against threshold
if max > peak threshold
continue
else
set tie-point flag to outlier and choose next tie-point

1.1.11 Measure sub-pixel peak location (See Band Registration Accuracy Assessment ADD -
Stage 4 Calculate Individual Point-by-Point Band Displacements)

Asub-line

Asub-sample

1.1.12. Calculate total pixel offset
total line offset = line offset + Asub-line
total sample offset = sample offset + Asub-sample



LDCM-ADEF-001
Version 3
1.1.13. Check offset against maximum displacement offset

totaldisplacement = \/ (totalline offset)? + (totalsamp le offset)?

if ( total displacement > maximum displacement )

Set tie-point flag to outlier and choose next tie-point
else

Set tie-point flag to valid

1.2 Store band tie-point mensuration information, correlation success, and offsets measured. See
table #1.

3. For band = 1 to Number of bands to process

3.1 Perform t-distribution outlier rejection (See Band Registration Accuracy Assessment - Stage 5
Removing Outliers Using the t-distribution).

3.2. Store band combination final individual tie-point information and outlier flag. See table #2.
4. For band combination = 1 to Number of band combinations

4.1. Calculate mean, minimum, maximum, median, standard deviation, and root mean squared
offset.

4.2. Store band combination statistics. See table #3.
5. Perform trending if trending flag is set to yes

5.1 Check results against trending thresholds
For each band
if measured RMSE > trending thresholds
exit trending
If there are no RMSE > trending thresholdsperform trending

7.2.8.7.5 Output files

The output files listed below for the Image Registration Accuracy Assessment follow the philosophy of
the Advanced Land Imager Assessment System (ALIAS) Image-to-Image (121) Characterization
output files in that they are made generic so that the same format can be used elsewhere.

All output files contain a standard header. This standard header is at the beginning of the file and
contains the following:

1) Date and time file was created.

2) Spacecraft and instrument pertaining to measurements.
3) Off nadir (roll) angle of spacecraft/instrument.

4) Acquisition type

5) Report type (Image-to-Image)

6) Work order ID of process (left blank if not applicable)

7) WRS path/row



LDCM-ADEF-001
Version 3
8) Software version that produced report.
9) LOR image file name

The data shown within Table 3 listed below is stored in the database. The statistics stored per band
will be used for trending analysis of the image registration accuracy of the OLI instrument. Results
produced through a time-series analysis of this data stored, over a set time interval or multiple image
files, will be used for a temporal assessment of the registration quality of the OLI products. The SCA
number fields are listed in the tables for Image Accuracy Assessment for consistency with the tables
listed in the Band Accuracy Assessment ADD.

99. Field 100. Description

101. Date and time 102. Date (day of week, month, day of month, year)
and time of file creation.

103. Spacecraft and 104. LDCM and OLI (TIRS if applicable)
instrument source

105. Processing 106. EROS Data Center SVT
Center

107. Work order ID 108. Work order ID associated with processing (blank if
not applicable)

109. WRS path/row 110. WRS path and row

111. Software version | 112. Software version used to create report

113. Off-nadir angle 114. Off-nadir roll angle of processed image file

115. Acquisition Type | 116. Earth viewing or Lunar

117. LOR image file 118. LOR image file name used to create L1T

119. Processed image | 120. Name of L1T used to create report

file name

121. Reference bands | 122. Reference bands used in image assessment
123. Search bands 124. Search bands used in image assessment
125. Heading for 126. One line of ASCII text defining individual tie-point
individual tie-points fields.

127. For each tie- 128.

point:

129. Tie point 130. Tie-point index/number in total tie-point list
number

131. Reference line | 132. Tie-point line location in reference image (band)
133. Reference 134. Tie-point sample location in reference image
sample (band)

135. Reference 136. Tie-point latitude location

latitude

137. Reference 138. Tie-point longitude location

longitude

1309. Reference 140. Elevation of tie-point location

elevation

141. Search line 142. Tie-point line location in search image

143. Search sample | 144. Tie-point sample location in search image
145, Delta line 146. Measured offset in line direction

147. Delta sample 148. Measured offset in sample direction




LDCM-ADEF-001
Version 3

149. Outlier flag 150. 1=Valid, 0=Ouitlier
151. Reference 152. Reference band number
band
153. Search band 154. Search band number
155. Reference 156. SCA number that reference window was extracted
SCA from
157. Search SCA 158. SCA number that search window was extracted
from
159. Search image | 160. Name of search image
161. Reference 162. Name of reference image
image
Table 3. Image Registration Accuracy Assessment Data File
163. Field 164. Description

165. Date and time

166. Date (day of week, month, day of month, year) and
time of file creation.

167. Spacecraftand | 168. LDCM and OLI (TIRS if applicable)

instrument source

169. Processing 170. EROS Data Center SVT

Center

171. Work order ID 172. Work order ID associated with processing (blank if

not applicable)

173. WRS path/row | 174. WRS path and row

175. Software 176. Software version used to create report

version

177. Off-nadirangle | 178. Off-nadir pointing angle of processed image file
179. Acquisition 180. Earth viewing or Lunar

Type

181. LOR image file | 182. LOR image file name used to create L1T

183. Processed 184. Name of L1T used to create report

image file name

185. Number of 186. Total number of tie-points stored in file

records

187. Heading for 188. One line of ASCII text defining individual tie-point
individual tie-points fields.

189. For eachband | 190.

combination

191. Combination | 192. Number of points in combination, reference band
header number, search band number.

193. For each tie- | 194.

point:

195. Tie point 196. Tie-point index/number in total tie-point list

number




LDCM-ADEF-001

Version 3
197. Reference | 198. Tie-point line location in reference image (band)
line
199. Reference | 200. Tie-point sample location in reference image (band)
sample
201. Reference | 202. Tie-point latitude location
latitude
203. Reference | 204. Tie-point longitude location
longitude
205. Reference | 206. Elevation of tie-point location
elevation
207. Search line | 208. Tie-point line location in search image
2009. Search 210. Tie-point sample location in search image
sample
211. Delta line 212. Measured offset in line direction
213. Delta 214. Measured offset in sample direction
sample
215. Outlier flag | 216. 1=Valid, 0=Outlier
217. Reference | 218. Reference band number
band
219. Search 220. Search band number
band
221. Reference | 222. SCA number that reference window was extracted
SCA from
223. Search 224. SCA number that search window was extracted
SCA from
225. Search 226. Name of search image
image
227. Reference | 228. Name of reference image
image

Table 4. Image Registration Accuracy Assessment Residuals File

229. Field 230. Description

231. Date and time 232. Date (day of week, month, day of month, year) and
time of file creation.

233. Spacecraftand | 234. LDCM and OLI (TIRS if applicable)
instrument source

235. Processing 236. EROS Data Center SVT
Center

237. Work order ID 238. Work order ID associated with processing (blank if
not applicable)

239. WRS path/row | 240. WRS path and row

241. Software 242. Software version used to create report
version

243. Off-nadir angle | 244. Off-nadir pointing angle of processed image file

245. Acquisition 246. Earth viewing or Lunar




LDCM-ADEF-001
Version 3

Type

247. LOR imagefile |248. LOR image file name used to create L1T

249. Processed 250. Name of L1T used to create report

image file name

251. t-distribution 252. Threshold used in t-distribution outlier rejection
threshold

253. Foreach band | 254.

255. Reference 256. Reference band of statistics

band

257. Search band | 258. Search band of statistics

259. SCA 260. SCA number of search image

261. Total tie- 262. Total number of tie-points for band

points

263. Correlated 264. Number of tie-points that successfully correlated for
tie-points band

265. Valid tie- 266. Total number of valid tie-points for band after all
points outlier rejection has been performed

267. For both line | 268. All statistics are given in terms of pixels

and sample direction:

269. Minimum 270. Minimum offset within all valid offsets

offset

271. Mean offset | 272. Mean offset of all valid offsets

273. Maximum 274. Maximum offset within all valid offsets

offset

275. Median 276. Median offset within all valid offsets

offset

2717. Standard 278. Standard deviation of all valid offsets

deviation

279. Root-mean- | 280. Root mean squared offset of all valid offsets
squared

Table 5. Image Registration Accuracy Assessment Statistics Output File

7.2.8.8 Maturity

3. Currently the t-distribution outlier rejection happens as a completely separate process. This is due only
to Landsat heritage where outlier rejection was done through the Analyst User Interface (AUI).

7.2.8.9 Notes
Some additional background assumptions and notes include:

12. The GCP structure and retrieval modules are setup to be generic. This structure contains the following

for each GCP:
1. a) Point ID

2. b) Chip name
3. c) Reference line and sample



LDCM-ADEF-001

Version 3
4. d) Latitude, Longitude
5. e) Projection X, Y, Z
6. f) Pixel size Y, X
7. g) Image chip size line, sample
8. h) Source of GCP
9. i) Date of GCP
10. j) Relative/absolute flag

11. This type of generic GCP structure and management will work for OLI processing also.

13.The correlation result fit method defines the algorithm used to estimate the correlation peak
location to sub-pixel accuracy. Only the quadratic surface fitting method described in this ADD
is supported in the baseline algorithm. Note that the fine least-squares correlation method,
invoked by selecting correlation windows with an odd number of lines or samples, does not
use a separate peak finding method.

14.Image Registration Accuracy statistics stored within the database will be accessed for
analysis.

a. Accessed according to a specific date range.

b. Accessed according to a specific band.

c. Accessed according to a specific geographic location.

d. Accessed according to acquisition type (nadir, off-nadir, lunar).

This data accessed can be retrieved and stored within a comma delimited file. The methodology

used to access the database could be an SQL script.

15. Data stored within the database will be accessed for time series analysis.

a. Data would be pulled for a user-specified time period.
b. Statistics over multiple scenes would be calculated and combined into band or scene
based statistics.

These calculations could be performed within the methodology used to access the data from the

database (SQL script).

16. There will need to be a set of criteria, based on calculated statistics, as to whether trending should be
performed or not. These criteria would be provided to avoid having garbage stored in the database. Any
values needed in determining whether the criteria have been met for trending would be stored and
retrieved from the CPF. There would be one threshold per band. The criteria to check for trending are
shown in section 5.1 of the Image Accuracy Assessment Processing steps section.

17.

7.2.9 OLI Band Registration Accuracy Algorithm

7.2.9.1 Background/Introduction

The OLI Band Registration Accuracy Assessment Algorithm (BRAA), or the Band-to-Band (B2B)
Characterization process, measures the relative band alignment between all bands of each Sensor
Chip Assembly (SCA) for the OLI instrument. The displacement for every pair-wise combination of all
bands of each SCA requested for assessment is measured; creating an over determined data set of
band-to-band measurements for each SCA. The residuals measured from the B2B characterization
process will be used to assess the accuracy of the band-to-band registration of the OLI instrument,
and if need be, used as input to the band calibration algorithm in order to calculate new line-of-sight
(LOS) parameters for the Calibration Parameter File (CPF).

The B2B characterization process works by choosing tie point locations within band pairs of each
SCA, extracting windows of imagery from each band and performing grey scale correlation on the
image windows. Several criteria are used in determining whether the correlation processing was



LDCM-ADEF-001
Version 3

successful. These criteria include measured displacement and strength of the correlation peak. The
sub-pixel location of the measured offset is calculated by fitting a 2™ order polynomial around the
discrete correlation surface and solving for the fractional peak location of the fitted polynomial. The
total offset measured is then the integer location of the correlation peak plus the sub-pixel location
calculated. A new fine-resolution least squares correlation method has been added to the heritage
algorithm to provide more accurate measurement of sub-pixel offsets. This method is described
below.

There are several options available for processing data through the Band Registration Accuracy
Assessment algorithm. These include choosing evenly spaced points for location of the windows
extracted, choosing to use the geometric grid for determining window locations in order to avoid fill
within the image files, specifying the bands and/or the SCA to process, and specifying the valid pixel
range to use during correlation. The least squares correlation method is invoked by requesting image
windows with at least one odd dimension , since the heritage algorithm only works with images with
even dimensions (e.g., 32x32 image windows will use normalized grey scale correlation but 31x31
image windows will use least squares correlation).

An Earth based acquisition will be used to characterize all bands except the cirrus. A lunar
acquisition will be used to characterize the cirrus band. Both types of acquisitions will be passed
through BRAA. In terms of the BRAA it does not matter which type of acquisition is being passed into
the algorithm, some of the processing parameters and options may change due to the acquisition
type but both types will use the same mensuration process to create an assessment of the band
registration.

7.2.9.2 Dependencies

The OLI BRAA assumes that a cloud free Earth viewing L1T or Lunar L1G image has been generated
and depending on the tie point selection type chosen, that the LOS Model Correction and the LOS
Projection and Gridding algorithms have been executed to create a geometric grid file. The L1T/L1G
image needs to be in the SCA-separated format and either in a SOM or UTM path-oriented projection
for Earth acquisitions. The digital orthophoto quadrangle (DOQ) control and best available digital
elevation model (DEM) needs to be used in generating the L1T.

7.2.9.3 Inputs
The BRAA and its component sub-algorithms use the inputs listed in the following table. Note that
some of these “inputs” are implementation conveniences (e.g., using an ODL parameter file to convey
the values of and pointers to the input data).

Algorithm Inputs Source
ODL file (implementation)

Calibration Parameter File (baseline) ODL
Correlation Fit Method (see note #14) CPF
Correlation Window Size CPF or ODL
Correlation Maximum Displacement CPF or ODL

Correlation Fill Threshold CPF or ODL

Correlation Minimum Fill Value CPF or ODL

Correlation Maximum Fill Value CPF or ODL

L1T/L1G image ODL

OLI resampling grid (optional) ODL

Outlier (t-distribution) threshold ODL

B2B characterization output file ODL




LDCM-ADEF-001

Version 3

Output residuals file name ODL
Output statistics file name ODL
SCAs to process ODL
Bands to process ODL
Fill range maximum ODL
Fill range minimum ODL
Fill threshold or percentage ODL
Correlation window size lines ODL
Correlation window size samples ODL
Tie-point spacing in line direction ODL
Tie-point spacing in sample direction ODL
Trending flag ODL
LOR ID (for trending) ODL
Work Order ID (for trending) ODL
Calibration Parameter File (baseline, if ODL

trending is requested)

Trending thresholds (Standard deviation CPF
line, sample per band per SCA - see note
#3).

7.2.9.4 Outputs

Pan downsampled image

B2B residuals file (see Table 2 below for details)

B2B output data file (see Table 1 below for details)

B2B statistics file (see Table 3 below for details)

B2B characterization trending (if trend flag set to yes)

LOR/L1R ID

Work Order ID

WRS Path/Row

B2B statistics for all band combinations and SCAs

The following processing parameters that are listed in the table above can be overridden if they are
given as fields within the input ODL file; correlation window size, maximum offset, minimum
correlation strength, fill threshold, maximum and minimum file values.

7.2.9.5 Options

Trending on/off switch
Grid-based tie-point generation
Normalized grey scale or least squares correlation

7.2.9.6 Prototype Code

Input to the executable is an ODL file; output is a set of ASCII files containing measured offsets
between band locations with and SCA.

The prototype code was compiled with the following options when creating the test data files:
-g -Wall -march=nocona -m32

The following text is a brief description of the main set of modules used within the prototype with each
module listed along with a very short description. It should be noted that almost all library modules
are not referenced in the explanations below. The modules within the main b2bchar directory of the



LDCM-ADEF-001
Version 3
prototype are discussed and any library modules that were determined to be important to the
explanation of either results, input parameters, or output parameters.

b2b_char

Main driver for application. Calls routines to retrieve ODL input and CPF parameters, read and verify
image metadata, reduce resolution of PAN band, create a set of tiepoints, and calls module that will
perform correlation on image tiepoint locations. Separate calls are made for creating tiepoints
depending on whether points are to be evenly spaced or based upon a resampling grid.

get_parms
Reads input ODL parameters. Checks validity of input band combinations listed in ODL file. Reads
CPF BRAA processing parameters.

verify_band_combos
Verifies search and reference band combinations given as input. Verification is done by matching
reference and search band list, if bands given do match an error is returned.

create_tiepoints
Driver for creating evenly spaced tiepoints. Calls det_tiepoints for each band combination storing
tiepoint locations in GCPLIB data structure.

det_tiepoints
Calculates a set of evenly spaced tiepoint locations based on image size. Tie points are based on
number of points given as an input ODL parameter and the size of the image file.

create_tiepoints_grid
Driver for creating tie points based on the resampling grid.

downsample

Main driver for reducing the resolution of the PAN band. Driver calls modules to initialize reduce
image file (setup_reduce_img), calculates cubic convolution weights (cubic_convolution_weights),
and applies cubic convolution weights to the PAN band (reduce).

setup_reduce_img
Initializes PAN reduced image file creation.

cubic_convolution_weight
Determines cubic convolution weights.

reduce
Applies cubic weights to PAN band. Output is written to file created/initialized in setup_reduce_img.

b2b_corr

Main driver for band correlation, or band mensuration, process. Driver opens image, calls module to
perform correlation at tie-point locations (process_gcp), and writes out band registration residuals file
(table 1). process_gcp is called on for each SCA and band combination given in the input ODL file.

process_gcp



LDCM-ADEF-001
Version 3
Process to perform correlation between two bands for one SCA. See Ground Control Point
Correlation ADD for information on the LDCM correlation modules and process. Calls module
xxx_check_fill to determine if a given window of imagery contains enough "non-fill" pixels so that
mensuration can be performed.

ias_math_check_pixels_in_range
Checks to see if percent of pixels within a given buffer contains fill. Fill is passed in as a parameter.
Module has been modified so that fill is a range rather than a single value.

math_fine_corr

Math library routine that implements the new (see below) least squares correlation algorithm
developed for fine sub-pixel offset measurement. Takes same-size reference and search image
windows as input and returns measured offsets.

7.2.9.7 Procedure

Band Registration Accuracy Assessment measures the misalignment between spectral bands after all
known geometric effects have been taken into account. The results from the band registration
assessment are used by the band alignment calibration routine (See Band Alignment Calibration
ADD) to estimate new Legendre LOSs (See Line-of-Sight Model Creation ADD) for each band of
each SCA. Due to the different viewing angles for each band of each SCA, geometric displacement
due to relief must be removed from the imagery for band-to-band characterization of Earth
acquisitions, i.e. input imagery for band registration assessment must be precision and terrain
corrected (See Resampling ADD). The steps involved in band registration assessment are depicted
in Figure 1 and include creating data sets with common pixel resolutions; choosing locations (tie-point
locations) for measurement; performing mensuration; removing outliers from calculated residuals; and
calculating statistics from the remaining residuals. Residuals are measured for each band
combination of each SCA that is requested through the input parameters.



LDCM-ADEF-001
Version 3

Retrieve
Parameters
Ny

L1Gt Reduced
;_" (PAN) ;—- Downsample j Pan ;

Geometric ‘ Create
Grid 1 Tie-Points
Process

F

Tie-Points

/é2B Output ]
File

L1T (Earth)
1G/L1Gp (luriar,

Filter Outliers
e —

T-distribution

Calculate B_ZB_
Statistics Statistics

Figure 1. Band Registration Accuracy Assessment Block Diagram

7.29.7.1

The OLI Band Registration Accuracy Assessment algorithm has heritage in the Landsat 7 (L7) and
Advanced Land Imagery (ALI) Image Assessments Systems (IAS) Band-to-Band Characterization
(B2B Char) algorithm/process. The prototype code for OLI BRAA will contain many of the same
modules that are present in the L7 and ALI IAS B2B Char. The core functions taken from ALIAS for
the band-to-band assessment processes that will be needed for OLI processing are specified where
applicable. Changes that may be necessary within these modules are briefly discussed. The
correlation and mensuration modules however are not described within this ADD as they are already
present within the Ground Control Correlation ADD, this ADD should reviewed for any information
pertaining to these processes. Also it should be noted that changes due to items such as file format,
which are not either instrument specific or due to changes to the algorithm, are not discussed.

7.2.9.7.2 Stage 1 - Data Input

The data input stage involves loading the information required to perform the band registration
assessment. This includes reading the image file, retrieving the output B2B file hames: output,
residuals and statistic files; retrieving or initializing processing parameters: maximum displacement,
fill range, fill threshold, minimum correlation peak, t-distribution threshold, SCAs to process, bands to
process, correlation window size, trending thresholds, tie-point method; and if tie-point method is set
to grid-based the geometric grid file name will be read. Once the input file, and if need be the
geometric grid name, has been retrieved the files and the information stored within them can be
opened and read.



LDCM-ADEF-001
Version 3

7.2.9.7.3 Stage 2 - Creating a Reduced Resolution PAN band

Before displacement between the PAN band and the other multispectral bands can be measured the
PAN band must be reduced in resolution to match that of the multispectral bands. An oversampled
cubic convolution function is used to reduce the resolution of the PAN band. Cubic convolution
interpolation uses a set of piecewise cubic spline interpolating polynomials. The polynomials have
the following form:

(@+2)x —(@+3)x* +1 0<|x<1
f(x)= a|X|3 —50:|x|2 +8alx|—4a 1<|x|/<2
0 X >2

Since the cubic convolution function is a separable function, a two dimensional representation of the
function is given by multiplying two one-dimension cubic convolution functions, one function
representing the x-direction the other function representing the y-direction. For an offset of zero, or x
=0, and a = -1.0 the discrete cubic function has the following values; f(0) = 1 and f(n) = 0 elsewhere.
Thus convolving the cubic convolution function of x = 0 with a data set leaves the data set
unchanged.

y[n]= f[n]®x[n]

forx=0

gives y[n] = x[n]

where ® is the convolution operator

Figure 2 shows what the cubic function f(t) (dashed line) and the corresponding discrete weights for
an offset, or phase, of zero (crossed-dots).



LDCM-ADEF-001
Version 3

[F Y

[0 o

IV

T L o o 0 P e b L i,
-3 o} = 4] L] z &5

Figure 2. Cubic Convolution Function and Weights for phase of zero.

To spatially scale an input data stream an oversampled cubic convolution function with a offset of x
=0 can be used. This can best be understood by looking at the Fourier Transform scaling property of
a function that is convolved with a given input data set:

f(t) ®x(t) © F(w) e X (w)

x(at) = ﬁ X [gj

Where:
®is convolution
e is multiplication
F is the Fourier transform of f
X is the Fourier transform of x
tis time
w is frequency

Applying the cubic function and scaling properties to an image data file shows that densifying the
points applied with the cubic convolution function will in turn inversely scale the function in the
frequency domain, thus reducing the resolution of the imagery. By setting the cubic convolution offset
to zero, densifying the number of weights of the cubic function, and convolving these weights to an
image file a reduction in resolution will be the resultant output image file. Figure 3 shows the cubic
function with corresponding weights densified by a factor of two and a phase shift of zero. To ensure
that the cubic weights do not scale the DNs of the output imagery during convolution the cubic
weights are divided by the scale factor.

Where:



fs[n] = scaled cubic convolution weights

f(n) = cubic convolution function

oA

=

x

|
!

—

- 7

1
1
|
)8(
sl ot leassaraasl
1 z &

-3

-1 4]

Figure 3. Cubic Convolution Densifyied by a factor of 2

LDCM-ADEF-001

Version 3

Scaling the cubic convolution function by a factor of 2 gives the following 1-dimensional set of

weights:

cow[n]=[0.0 —0.0625 0.0 0.3125 0.5 0.3125 0.0 —0.0625 0.0]

To determine the 2-dimensional cubic convolution weights two 1-dimensional sets of cubic weights
are multiplied together (note only 7 values are needed for ccw, outside of this extent the weights are

zero):

ccw[n] x ccew[m] = ccw[n, m] =

Where:

ccw[n] is a 8x1 1-dimensional set of cubic weights

[ 0.0039 0.0

0.0 0.0
-0.0195 0.0
—-0.0313 0.0
-0.0195 0.0

0.0 0.0
| 0.0039 0.0

—0.0195
0.0
0.0977
0.1563
0.0977
0.0
—0.0195

—0.0313
0.0
0.1563
0.25
0.1563
0.0
—0.0313

—0.0195
0.0
0.0977
0.1563
0.0977
0.0
—0.0195

ccw[m] is a 1x8 1-dimensional set of cubic weights

7.2.9.7.3.1Procedure for Reducing PAN band
To reduce the resolution of the PAN band apply the ccw[n,m] weights to the PAN image data:

0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0039 |
0.0
—-0.0195
—-0.0313
—-0.0195
0.0

0.0039 |



LDCM-ADEF-001
Version 3

reduced pan = ccw[n, m] * pan band

Note: number of lines and number of samples listed below pertain to the size of the PAN band
imagery.

Reduce PAN Band Resolution Processing Steps
1. Setline =0 then for every other PAN line
1.1. Set sample = 0 then for every other PAN sample
1.2.initialize summing variable sum = 0.0
1.3.Form=-4to4
1.3.1. Forn=-4to4
1.3.2. Check to see if current image index is within valid imagery

1.3.3. if m + line < 0 then line index = -m - line
else if m + line >= number of lines then line index =
2 * number of lines-m-line -1
else line index = m + line

1.3.4. if n+ sample < 0 then sample index = -n - sample

else if n + sample >= number of sample then sample index =
2 * number of samples - n - sample - 1

else sample index = n + sample

1.3.5. sum = sum + ccw[n+4,m+4] « pan[line index, sample index]

1.4.Store output DN for reduced PAN
output line =line / 2
output sample = sample / 2
reduce pan[output line, output sample] = sum

7.2.9.7.4 Stage 3 - Create Tie-point Locations

Tie point locations may be determined in an evenly spaced pattern in output space or they may be
established in an evenly spaced pattern in input space, using the OLI geometric grid.

7.2.9.7.4.1Determine Evenly Spaced Tie-points (See notes #6 and #7)

To determine evenly spaced tie-point locations a tie-point location is defined by stepping through the
output space of the imagery by the user defined steps N,M.

Create Evenly Spaced Tie-Points Processing Steps

1. Determine number of tie-points in sample and line direction:



LDCM-ADEF-001
Version 3

ONS - correlation window samples
M-1
ONL — correlation window lines
N-1

tie - pointspacing X =

tie - pointspacingy =

Where:
M = user entered number of tie-points in sample direction
N = user entered number of tie-points in line direction
ONS = number of samples in output space of multispectral band
ONL = number of lines in output space of multispectral band
Correlation window samples = user entered correlation window size in samples
Correlation window lines = user entered correlation window size in lines

2. Set evenly spaced tie-point locations
2.1.Forj=0to N-2
_correlation window lines

tie - point location y[j]= > + j*tie - pointspacing y
2.2. tie - point location y[N —1] = ONL — correlation v2v|ndow lines

2.3.Fori=0to M-2
. . . .1 correlation window samples . .. . .
tie - point location x(i] = > +i * tie - point spacing x

correlation window samples
2

2.4. tie - point location x[M -1] = ONS —

7.2.9.7.4.2Determine Geometric Grid Spaced Tie-points (See notes #6 and
#7)

For descriptions of the format and data stored within the geometric grid see the Line of Sight
Projection to Ellipsoid and Terrain ADD.

Geometric Space Tie-points Processing steps.
1. Read image extent parameters from geometric grid
INS = input (raw) space number of samples

INL = input (raw) space number of lines

2. Determine number of tie-points in sample and line direction:
INS — correlation window samples

spacing X =
p g M-1

. INL — correlation window lines
spacingy = =l

3. Establish input (raw) space tie-point locations

3.1 Forj=0to N-2

.1 correlation window lines . .
[J]Z 5 + J*Spacingy




LDCM-ADEF-001
Version 3
correlation window lines

2

3.2 y[N-1]=INL -

3.3 Fori=0to M-2

.1 correlation window samples . .
x[i]= > +i*spacing x

correlation window samples
2

3.4 x[M-1]=INS -

4. Project inputs space tie-points locations to output space
4.1 For j=N-1

4.1.1 For i=M-1
Map input space tie-point location to output space using grid mapping coeffcients.
tie-point locationy =bg + by * X[i] + by * y[j] + bz * X[i] * y[j]
tie-point location X = ap + a; * X[i] + a2 * y[j] + az * X[i] * y[j]
Where (See note #7):
an = geometric grid forward sample mapping coefficients for zero elevation
plane retrieved from the resampling grid
b, = geometric grid forward line mapping coefficients for zero elevation plane
retrieved from the resampling grid

7.2.9.7.5 Stage 4. Calculate Individual Point-by-Point Band Displacements

Normalized cross correlation is the standard method used to measure spatial differences between the
reference and search windows extracted from the two bands being compared. The normalized cross
correlation process helps to reduce any correlation artifacts that may arise from radiometric
differences between the two image sources. The correlation process will only measure linear
distortions over the windowed areas. By choosing appropriate correlation windows that are well
distributed throughout the imagery, nonlinear differences between the image sources can be found.
Normalized grey scale correlation has the following formula:

> Y [(f(j,o—¥j[g(x+j,y+i)—éﬂ

R(X, ) = j==N/2i=—M/2

{2 MZ/Z(f(j,i)—fT lez(g(xu,wi)—éjz}

j==N/2i==M/2 j=—N/2i=—M /2

1/2

Where:
N = M = Correlation window size in lines and samples
R = correlation surface (N,M) (See note# 10)
F = reference window (N,M)

G = search window (N,M)
_ 1 N/2 M/2

F= ™MD +1)J-Z 2, 1D

=N/2i=—M/2




LDCM-ADEF-001

Version 3
= 3 gl jy+)
= X+ j,y+Ii
: (M +1)(N +1) j:—N/Zi:—M/g 1y

Normalized cross correlation will produce a discrete correlation surface (i.e., correlation values at
integer x,y locations). A sub pixel location associated with the displacement is found by fitting a
polynomial around a 3x3 area centered on the correlation peak. The polynomial coefficients can be
used to solve for the peak or sub pixel location. Once the discrete correlation has been calculated
and the peak value within these discrete values has been found the sub-pixel location can be
calculated:

P(y,X) =a, +aX+a,y+aXy +a,x* +a,y’
Where

P(x,y) is polynomial peak fit

X = sample direction

y = line direction

Set up matrices for least squares fit of discrete R(x,y) to x/y locations.
REL-D] 1 -1 -1 (-D*(D) (D)* (-07]
R10) | |1 0 -1 (=1)*(0) (0)® (-1
D= : s s Lal]
R(10) 10 1 @*0 (0 (0
RLH | 11 1 @O*O O O]

9x1 9x6

or: [Y]=[X] [a]

Note that R(x,y) is relative to the peak, the total offset will need to have the integer line offset and
sample offset added to the sub-pixel location to have the total measured offset. Solving for the peak
polynomial using least squares:

[a] = (xT X [xT[¥]

Calculating the partial derivative of P(x,y) in both the x and y directions, setting the partial equations
to zero, and solving the partials for x and y, gives the sub-pixel location within the sub-pixel 3x3
window.

%P(x,y):a1+a3y+2a4x:0

%P(x, y)=a,+a,x+2a,y=0

Set partial equations equal to zero and solve for x and y:

2313'5 — a3,

Sub-pixel x offset =
P a32 _4a4as



LDCM-ADEF-001
Version 3

Sub-pixel y offset = M
a; —4a,a;

The steps for mensuration, calculating the total offset measured, and how they fit in the overall
procedure is given in the processing steps section.

See the Ground Control Point Correlation ADD for prototype specifications of the normalized grey
scale correlation processes.

Least Squares Fine Correlation Method

The band-to-band and image-to-image accuracy characterization algorithms also provide a second,
least-squares based correlation method that can be used to measure sub-pixel image displacements
somewhat more reliably than the cross-correlation/peak finding method used for general purpose
correlation. This is useful for band registration measurements where the displacements should
always be much less than a pixel, and where the quadratic peak finding method can introduce small
offset-dependent biases in the measurements. This method requires that the reference and search
image windows be the same size and that the offsets to be determined be less than 1 pixel. Since the
normalized grey scale correlation algorithm does not work on image windows whose dimensions are
not even numbers, this least squares correlation method is invoked if either window dimension is an
odd number.

The least squares correlation method uses the reference and search image window pixels to estimate
the sample offset (Asample), line offset (Aline), gain, and bias adjustments that best match the
(Asample, Aline) shifted and bilinearly interpolated search image to the radiometrically adjusted
(1+Again, Abias) reference image. The 3x3 pixel image sub-window surrounding each interior (non-
edge) image pixel in the reference and search windows provides one observation for purposes of
estimating the four adjustment parameters, using the following model:

So + Sy * Asample + Sy * Aline + S,y * Asample * Aline = Ro * (1+Again) - Abias

Where:
So = Si; = the central pixel in the 3x3 search sub-window centered at (i,j)
Sx = (Si+1j — Si-1,))/2 = slope estimate in the sample direction
Sy = (Sij+1 — Sij-1)/2 = slope estimate in the line direction
Sxy = (Sit1j+1 + Sic1j1 — Sisj1 - Sicaj+1)/4 = rate of slope change
Ro = Rij = the reference image pixel corresponding to S;;

This can be reorganized into an observation model for the 4 fit parameters:
Sy*Asample + Sy*Aline - Ro*Again + Abias = Ro - Sp - Syy*Asample*Aline

Or:

Asample
Aline :
S, -R, 1 = [RO =S, -5, AsampIeAIme]
Again
Abias
[1x4][4x1]=[1x1] Arraysizes



LDCM-ADEF-001
Version 3

Note that this equation is not linear (since Asample and Aline appear on the right hand side) and must
be solved iteratively.

Each non-edge pixel generates an observation of this form:
[Xi,I" [coef] = [Yi]]
Where:
[Xij]"=[Sx Sy -Ro 1] (1x4 matrix)
[coef] = [ Asample Aline Again Abias ]" (4x1 matrix)
[Yij]l = [ Ro—So — Syy Asample Aline ]  (1x1 matrix)

Taken together, these observations can be used to compute the best fit, in the least squares sense,
values for the four fit parameters:

[N] = = [Xi;] [Xi J] (4x4 matrix)
[C] =2 [X] [YI J] (4x1 matrix)
[coef] = [N]* [C] (4x1 matrix)

The computed values of the fit parameters in [coef] are used to update the [Y;;] values for each
iteration.

The solution procedure is as follows:
1. Verify that the input reference and search windows are the same size and that the window
dimensions are both at least 3 pixels.
2. Initialize the least squares solution normal equations:

a. Set all 4 elements of the 4x1 constants vector C to zero.

b. Set all 16 elements of the 4x4 normal equation matrix N to zero.

c. Set the normal equation diagonal term corresponding to the gain parameter, N[2][2],
to 1/c5g2, where oy is the apriori standard deviation of the gain parameter, set to 0.05
(5%) to limit the magnitude of the gain adjustment.

d. Set the normal equation diagonal term corresponding to the bias parameter, N[3][3],
to 1/0p, where oy, is the apriori standard deviation of the bias parameter, set to 5 DN
to limit the magnitude of the bias adjustment.

e. Initialize the four adjustment parameter values to zero.

3. lterate the solution 3 times. For each iteration:

a. Loop through the non-edge image pixels, Sij, Rij, in the Nsamp by Niine image

windows, where 0 <i < Nsamp-1 and 0 <j < Njine-1. For each pixel:
I. Compute Sy, Sy, Sy, and S,y from the 3x3 search sub-window surrounding the
current pixel using the equations above.
ii.  Compute the right hand side of the observation equation using Ry and the
current estimates of Asample and Aline:
RHS = Rg — Sg — Syy * Asample * Aline
iii. Add this observation to the normal equations:
N[O][O] += Sx * Sy
N[O][1] += Sx* Sy
N[O][2] -= Sx * Ro



LDCM-ADEF-001
Version 3
N[O][3] += S
C[0] += S« * RHS
N[1][1] += Sy * Sy
N[1][2] -= Sy * Ro
N[1][3] += Sy
C[1] += Sy * RHS
N[2][2] +=Rg *Rg
N[2][3] -= Ro
C[2] -=Ro * RHS
N[3][3] +=1
C[3] += RHS
b. Complete the symmetric normal equation matrix:
N[1][0] = N[O][1]
N[2][0] = N[O][2]
N[2][1] = N[1][2]
N[3][0] = N[O][3]
N[3][1] = N[1][3]
N[3][2] = N[2][3]
c. Solve the normal equations:
X = [ Asample Aline Again Abias]'=N*C
4. Return the results of the final iteration:
Fit_offset[0] = Asample
Fit_offset[1] = Aline
Diag_Displacement = sgrt( Asample * Asample + Aline * Aline )

7.2.9.7.6 Stage 5. Removing Outliers Using the t-distribution

Once all the line and sample offsets have been measured and the first level of outlier rejection has
been performed, a check against the maximum allowable offset and the minimum allowable
correlation peak, the measurements are further reduced of outliers using a Student-t outlier rejection.

Given a t-distribution tolerance value, outliers are removed within the data set until all values deemed
as “non-outliers” or “valid” fall inside the confidence interval of a t-distribution. The tolerance, or
associated confidence interval, is specified per run (or processing flow) and usually lies between 0.9-
0.99. The default value is 0.95. The number of degrees of freedom of the data set is equal to the
number of valid data points minus one. The steps involved in this outlier procedure are given below.
The process listed works on lines and samples simultaneously, calculating statistics independently for
each.

Student-t Outlier Rejection Processing steps.

1. Calculate mean and standard deviation of data for lines and samples (see stage #6).
1 N
mean offset = N > offset,
i=0

N 2
standard deviation = ﬁ > (offset; — mean offset)
—4i=0

Where:

N = number of valid offsets measured (above peak threshold and below maximum offset)



LDCM-ADEF-001
Version 3

Two means and standard deviations are calculated, one for the line direction and one for the sample
direction.

2. Find largest offset and compare it to outlier threshold.

2.1.Calculate two tailed t-distribution (T) value for current degree of freedom (N-1) and confidence
level a.

2.2.Calculate largest deviation from the mean allowable for the specified degree of freedom and
a:
Aline = Ojine* T
Asample = Osampie* T
Where:
Oiine = Standard deviation of valid line offsets
Osample = Standard deviation of valid sample offsets

2.3.Find valid data point that is farthest from the mean.
max line; = MAX{ line offset - mean line offset}
max sample; = MAX{ sample offset - mean sample offset}
Where:
The maximum is found from all valid offsets
i is the tie-point number of max line
j is the tie-point number of max sample

2.4.1f valid data point that is farthest from the mean is greater than the allowable A then the valid
point is flagged as outlier.
if max line; > Aline or max sample; > Asample then
if( max sample;j / Osample > Max line; / Ojine )
tie-point j is marked as an outlier
else
tie-point i is marked as an outlier
else no outliers found

. Repeat 1 and 2 above until no outliers are found.

7.2.9.7.7 Stage 6. Calculating Measured Statistics

The mean, standard deviation, minimum, maximum, median, and root-mean squared offset (RMS)
are calculated from the tie-points that pass all outlier criteria; below maximum offset, above peak
threshold, and student t-distribution test. The calculation for mean, standard deviation, and RMS are
shown below where x; is the measured offset.

mean: m, =

z

-1
X.

N

Il
o




LDCM-ADEF-001
Version 3

7.2.9.7.7.1Band Accuracy Assessment Processing steps

Windows extracted from imagery have the user entered dimensions; correlation window lines and
correlation window samples. Correlation parameters have been read or set as default values;
maximum offset, fit method, correlation peak, fill data range, fill threshold. The bands should be
indexed so that the PAN band is always used as a reference to all other bands.

1. For SCA = Number of SCAs to process
1.1.For rband = Number of OLI bands to process
if rband is equal to PAN use reduced PAN image file
1.2.For sband = rband + 1 to Number of OLI bands to process
1.3.For index = Number of tie-points to process

1.3.1. Read current tie-point chip and tie-point location x,y
Set tie-point flag to unsuccessful

1.3.2. Extract sband window (of imagery) at tie-point location X,y
1.3.3. Extract rband window (of imagery) at tie-point location x,y

1.3.4. Count number of pixels in rband window that is within fill range.
count=0
For i=0 to number of pixels in correlation window
If rband pixel is > fill min and rband pixel is < fill max
count++

1.3.5. Check number of rband pixels counted against fill threshold/percentage.

if _count il threshold
correlation window size

increment index to next tie-point location

else
continue

1.3.6. Count number of pixels in sband window that is within fill range.
count=0



LDCM-ADEF-001
Version 3
For i=0 to number of pixels in correlation window
If sband pixel is > fill min and sand pixel is < fill max
count++

1.3.7. Check number of sbands pixels counted against fill threshold/precentage.

if count > fill threshold

correlation window size
increment index to next tie-point location

else
continue

1.3.8. Perform normalized grey scaled correlation between rband and sband windowed
images, calculating correlation surface R (See Stage 4 and notes #9 and #10).

1.3.9. Find peak within correlation surface

Max = R(0,0)

For i=0 to correlation window number of lines -1

For j=0 to correlation window number of samples -1
If R(i,j) > max then

Max = R(i,])
line offset =i
sample offset =

1.3.10. Check correlation peak against threshold
if max > peak threshold
continue
else
set tie-point flag to outlier and choose next tie-point

1.3.11. Measure sub-pixel peak location (see stage #4)
Asub-line
Asub-sample

1.3.12. Calculate total pixel offset
total line offset = line offset + Asub-line
total sample offset = sample offset + Asub-sample

1.3.13. Check offset against maximum displacement offset
totaldisplacement = \/ (total line offset)? + (totalsamp le offset)?

if ( total displacement > maximum displacement )

Set tie-point flag to outlier and choose next tie-point
Else

Set tie-point flag to valid

1.4. Store SCA and band combination (rband-to-sband) tie-point mensuration information,
correlation success, and offsets measured. See table #1.

2. For SCA =1 to Number of SCAs to process



LDCM-ADEF-001
Version 3

2.1.For band combination = 1 to Number of band combinations
2.1.1. Perform t-distribution outlier rejection (See stage #5).

2.2.Store SCA and band combination final individual tie-point information and outlier flag. See
table #2.

3. For SCA =1 to Number of SCAs to process
4. For band combination = 1 to Number of band combinations

4.1. Calculate mean, minimum, maximum, median, standard deviation, and root mean squared
offset.

4.2.Store SCA and band combination statistics. See table #3.
5. Perform trending if trending flag is set to yes

5.1. Check results against trending thresholds
For each band of each SCA
if measured Standard Deviation > trending threshold
exit trending
If there are no Standard Deviation > trending thresholds perform trending

7.2.9.8 Output files

The output files listed below for the BRAA follow the philosophy of the Advanced Land Imagery Image
Assessment System (ALIAS) Band-to-Band (B2B) Characterization output files in that they are made
generic so that the same format can be used elsewhere. Therefore some fields like latitude,
longitude, and elevation may not apply to the application and would be filled with zeros or nominal
values.

All output files contain a standard header. This standard header is at the beginning of the file and
contains the following:

1) Date and time file was created.

2) Spacecraft and instrument pertaining to measurements.
3) Off-nadir (roll) angle of spacecraft/instrument.

4) Acquisition type

5) Report type (band-to-band)

6) Work order ID of process (left blank if not applicable)

7) WRS path/row

8) Software version that produced report.

9) LOR image file name

The data shown within Table 3 listed below is stored in the database. The statistics stored per band
per SCA will be used for trending analysis of the band registration accuracy of the OLI instrument.
Results produced through a time-series analysis of this data stored, over a set time interval or



LDCM-ADEF-001
Version 3

multiple image files, will determine if new Line-of-Sight (LOS) Legendre coefficients will need to be
generated from the OLI Band-to-Band Calibration Algorithm (See OLI Band-to-Band Calibration ADD
for details). These statistics may also be needed for providing feedback to the LDCM user
community about the band registration of LDCM products generated.



281. Field

282. Description

283. Date and time

284. Date (day of week, month, day of month, year)
and time of file creation.

285. Spacecraft and
instrument source

286. LDCM and OLI (TIRS if applicable)

287. Processing
Center

288. EROS Data Center SVT

289. Work order ID

290. Work order ID associated with processing (blank if
not applicable)

291. WRS path/row

292. WRS path and row (See note #11)

293. Software version

294. Software version used to create report

295. Off-nadir angle

296. Off-nadir roll angle of processed image file (See
note #12)

297. Acquisition Type

298. Earth viewing or Lunar

299. LOR image file

300. LOR image file name used to create L1T

301. Processed image
file name

302. Name of L1T used to create report

303. Reference bands

304. Reference bands used in band assessment

305. Search bands

306. Search bands used in band assessment

307. Heading for
individual tie-points

308. One line of ASCII text defining individual tie-point
fields.

309. For each tie- 310.

point:

311. Tie point 312. Tie-point index/number in total tie-point list
number

313. Reference line | 314. Tie-point line location in reference image (band)
315. Reference 316. Tie-point sample location in reference image
sample (band)

317. Reference 318. Tie-point latitude location

latitude

3109. Reference 320. Tie-point longitude location

longitude

321. Reference 322. Elevation of tie-point location (see note #13)
elevation

323. Search line 324. Tie-point line location in search image

325. Search sample | 326. Tie-point sample location in search image

327. Delta line

328. Measured offset in line direction

329. Delta sample

330. Measured offset in sample direction

331. Outlier flag

332. 1=Valid, 0=Outlier

333. Reference 334. Reference band number

band

335. Search band 336. Search band number

337. Reference 338. SCA number that reference window was extracted
SCA

339. Search SCA

340. SCA number that search window was extracted

341. Search image

342. Name of search image

343. Reference
image

344. Name of reference image

LDCM-ADEF-001

Version 3



LDCM-ADEF-001
Version 3

Table 6. Band Registration Accuracy Assessment Data File



LDCM-ADEF-001
Version 3

345. Field

346. Description

347. Date and time

348. Date (day of week, month, day of month, year) and
time of file creation.

349. Spacecraftand | 350. LDCM and OLI (TIRS if applicable)
instrument source

351. Processing 352. EROS Data Center SVT

Center

353. Work order ID

354. Work order ID associated with processing (blank if
not applicable)

355. WRS path/row

356. WRS path and row (See note #11)

357. Software 358. Software version used to create report

version

359. Off-nadir angle | 360. Off-nadir pointing angle of processed image file
(See note #12)

361. Acquisition 362. Earth viewing or Lunar

Type

363. LOR imagefile | 364. LOR image file name used to create L1T

365. Processed 366. Name of L1T used to create report

image file name

367. Number of 368. Total number of tie-points stored in file

records

369. Heading for 370. One line of ASCII text defining individual tie-point

individual tie-points fields.

371. Foreachband | 372.

combination

373. Combination | 374. Number of points in combination, reference band

header number, search band number.

375. For each tie- | 376.

point:

377. Tie point 378. Tie-point index/number in total tie-point list

number

379. Reference | 380. Tie-point line location in reference image (band)

line

381. Reference | 382. Tie-point sample location in reference image (band)

sample

383. Reference | 384. Tie-point latitude location

latitude

385. Reference | 386. Tie-point longitude location

longitude

387. Reference | 388. Elevation of tie-point location

elevation

389. Search line | 390. Tie-point line location in search image

391. Search 392. Tie-point sample location in search image

sample

393. Delta line 394. Measured offset in line direction

395. Delta 396. Measured offset in sample direction

sample

397. QOutlier flag | 398. 1=Valid, 0=Outlier




LDCM-ADEF-001
Version 3

399. Correlation | 400. Correlation coefficient for tie point correlation
coef

401. Reference | 402. Reference band number

band

403. Search 404. Search band number

band

405. Reference | 406. SCA number that reference window was extracted
SCA from

407. Search 408. SCA number that search window was extracted
SCA from

4009. Search 410. Name of search image

image

411. Reference | 412. Name of reference image

image

Table 7. Band Registration Accuracy Assessment Residuals File



LDCM-ADEF-001
Version 3

413. Field

414. Description

415. Date and time

416. Date (day of week, month, day of month, year) and
time of file creation.

417. Spacecraftand | 418. LDCM and OLI (TIRS if applicable)

instrument source

419. Processing 420. EROS Data Center SVT

Center

421. Work order ID 422. Work order ID associated with processing (blank if

not applicable)

423. WRS path/row | 424. WRS path and row (See note #12)

425. Software 426. Software version used to create report

version

427. Off-nadir angle | 428. Off-nadir pointing angle of processed image file

(See note #13)

429. Acquisition 430. Earth viewing or Lunar

Type

431. LOR image file | 432. LOR image file name used to create L1T

433. Processed 434. Name of L1T used to create report

image file name

435. t-distribution 436. Threshold used in t-distribution outlier rejection

threshold

437. For eachband | 438.

combination of each

SCA processed

439. Reference 440. Reference band of statistics

band

441. Search band | 442. Search band of statistics

443. SCA 444. SCA number of statistics

445, Total tie- 446. Total number of tie-points for band combination of

points SCA

447. Correlated 448. Number of tie-points that successfully correlated for

tie-points band combination of SCA

449, Valid tie- 450. Total number of valid tie-points for band

points combination of SCA after all outlier rejection has been
performed

451. For both line | 452. All statistics are given in terms of pixels

and sample direction:

453. Minimum 454. Minimum offset within all valid offsets

offset

455, Mean offset | 456. Mean offset of all valid offsets

457. Maximum 458. Maximum offset within all valid offsets

offset

459. Median 460. Median offset within all valid offsets

offset

461. Standard 462. Standard deviation of all valid offsets

deviation

463. Root-mean- | 464. Root mean squared offset of all valid offsets

squared




LDCM-ADEF-001
Version 3

Table 8. Band Registration Accuracy Assessment Statistics Output File

7.2.9.8.1 Assessing Band Registration (Accessing Statistics Stored in
Database)

The Band Accuracy Assessment statistics stored in the database will need to be accessed by the
geometric CalVal team. Delineation, or essentially data base querying, will be done by the following
or a combination of the following:

1) Date range of image acquisition or processing date
2) By SCA number

3) By band number

4) By acquisition type (Nadir, off-nadir, Lunar)

5) By geographic location of image extent.

At a minimum access to the Band Accuracy Assessment statistics is needed. Simple tools, such as
an SQL queries, would be beneficial to the geometric CalVal team but are not absolutely necessary
as they could be developed later through other means.

7.2.9.9 Maturity

7.2.9.10 Notes

Some additional background assumptions and notes include:

18. Correlation parameters, minimum correlation peak and maximum offset, are stored and retrieved from
the CPF.

19.Options need to be available for generating statistics; scene statistics, individual bands per
SCA, SCA summary, band summary. These statistics would be provided to the user as
summary statistics to be provided as image quality assessment to the user community.

20. There will need to be a set of criteria, based on calculated statistics, as to whether trending should be
performed or not. These criteria would be provided to avoid having garbage stored in the database. Any
values needed in determining whether the criteria have been met for trending would be stored and
retrieved from the CPF. There would be one threshold per band per SCA. The criteria to check for
trending are shown in section 5.1 of the Band Accuracy Assessment Processing steps section.

21.Band Accuracy statistics stored within the database will be accessed for analysis.

a. Accessed according to a specific date range.

b. Accessed according to a specific band or SCA.

c. Accessed according to a specific geographic location.

d. Accessed according to acquisition type (nadir, off-nadir, lunar).
This data accessed will be retrieved and stored within a comma delimited file. The
methodology used to access the database could be an SQL script. This SQL query code
could be developed either by the IPE or outside of the IPE.

22.Data stored within the database will be accessed for time series analysis.

a. Data would be pulled out by scene/SCA band pairs for a user-specified time period.
b. Statistics over multiple scenes would be calculated per SCA and/or per band. Then
combined them into the SCA and/or band average statistics.



LDCM-ADEF-001
Version 3
c. Results could be compared to the band registration spec. These results could serve as
triggers to other events, i.e. new CPF generation and testing.
d. Results could be used to verify conformance with product specifications.
These calculations could be performed within the methodology used to access the data from
the database (SQL script).

23.Tie-point locations could also be stored and used as projection Y and X coordinates. The
appropriate conversions must be done when converting between projection coordinates and
line and sample locations when extracting image windows between bands. This
transformation should also include any rotation due to path orientated projections.

24.The prototype code uses a library call that maps any input point with a given elevation to
output space. For BRAA, the elevation for the mapping point is set to zero. Since for BRAA
the reference and search output space are the same, output line/sample in output reference
space should be line/sample in output search space.

25.The ¢ and d parallax coefficients are needed for each band or each SCA for every grid cell
point. Therefore if the coefficients were stored as arrays stacked by grid column and then grid
row for a particular input pixel that fell within grid cell column N and grid cell row M the c and d
coefficients needed for that pixel would be indexed by: index = (M * number of grid columns +
N) * 2. The factor of 2 is due to the fact the parallax odd/even effects are mapped as linear
therefore 2 coefficients are stored for each the odd and even pixels of a grid cell.

26.The grey scale correlation process, or surface, can be implemented using a Fast Fourier
Transform (FFT).

27.The correlation surface could be smaller than the search window depending on the search
area or maximum offset.

28.Any kind of "non-WRS" collect; like lunar, should have 000/000 listed as the path/row.

29.Pointing angle for lunar acquisitions would be 0.0.

30. This tie point residual file structure is also used for the image registration accuracy
characterization algorithm so it includes fields that are not required for both algorithms. An
example is the elevation field which is set to 0 for this algorithm.

31.The correlation result fit method defines the algorithm used to estimate the correlation peak
location to sub-pixel accuracy. Only the quadratic surface fitting method described in this ADD
is supported in the baseline algorithm. The Least-Squares Correlation technique does not use
the surface fitting method, for the grey scale correlation technique the peak fitting method still
applies.



LDCM-ADEF-001
Version 3

7.2.10 OLI Band-to-Band Calibration Algorithm

7.2.10.1 Background/Introduction

The Band-to-Band Calibration (B2BCal), or Band Calibration, algorithm estimates improved values for
band placement within each Sensor Chip Assembly (SCA) of the OLI instrument. Adjustments are
made relative to the PAN band, or in other words, the PAN band serves as the reference for all other
bands.

The B2B calibration takes the Band Accuracy Assessment residuals file, which represents
displacements with respect to the product output projection space, maps the residuals back into
displacements with respect to the focal plane and then performs a least squares (LSQ) fit between
the focal plane residuals to determine updates to the OLI band Legendre line-of-sight (LOS)
polynomial coefficients. The least squares fit results represent updates needed to adjust the existing
Legendre LOS coefficients. These updates can be used to produce new Legendre LOS coefficients
for the Calibration Parameter File (CPF).

An Earth based acquisition will be used to calibrate all bands except the cirrus. A lunar acquisition or
a high elevation Earth target acquisition will be used to calibrate the cirrus band.

7.2.10.2 Dependencies

The OLI B2B calibration algorithm assumes that a cloud free nadir viewing L1T image has been
generated and the resampled DEM used to create the L1T is available. The Model Creation and LOS
Projection/Gridding algorithms for the L1T will be assumed to have been executed and the
corresponding output files available. The L1T image needs to be in a SCA separated format and
either in a SOM or UTM path oriented projection. The digital orthophoto quadrangle (DOQ) control
and best available digital elevation model (DEM) needs to be used in generating the L1T. The
accuracy of the precision solution should have post-fit residuals below the recommended threshold,
the solution should have used an adequate number of control points, and the distribution of the
control should be well distributed throughout the imagery. The Band Registration Accuracy
Assessment, or Band Characterization (B2BChar), algorithm will assumed to have been run on the
L1T image successfully producing a Band Accuracy Assessment residuals file. This Band Accuracy
Assessment residuals file, along with the CPF, geometric line of sight model, the co-registered DEM,
and the geometric line of sight resampling grid, are used as inputs to the Band Calibration algorithm.

7.2.10.3 Inputs
The B2B calibration algorithm uses the inputs listed in the following table. Note that some of these
“‘inputs” are implementation conveniences (e.g., using an ODL parameter file to convey the values of
and pointers to the input data).

Algorithm Inputs Algorithm Inputs
OLI resampling grid ODL

DEM ODL

OLI CPF file name ODL

Along track IFOV CPF/LOS-model
Minimum points ODL

Number of Legendre Coefficients ODL (See note #6)
OLI Line-of-Sight model ODL




LDCM-ADEF-001

Version 3
B2B residuals file ODL
Band calibration report file ODL
Trend flag ODL
Flag for CPF group creation (see note #3) ODL
Flag for individual tie-point listing ODL
CPF effective dates (begin and end) ODL
LOR ID (for trending) ODL
Work Order ID (for trending) ODL
7.2.10.4 Outputs

B2B calibration report file (See note #1 and table #1)

Legendre LOS CPF group

B2B calibration trending

LOR/L1R ID

Work Order ID

WRS Path/Row

B2B calibration post and pre fit residuals

New SCA line-of-sight parameters

7.2.10.5 Options

Trending on/off switch
fits LOS group within OLI CPF.

7.2.10.6 Prototype Code

Input to the executable is an ODL file, output is an ASCII file containing measured offsets between
band combinations of the L1T image and the corresponding updated line-of-sight (LOS) Legendre
CPF coefficients. Under this directory is the ODL input file needed, band accuracy assessment
residuals file, the input CPF, the output reports file and the output updated Legendre LOS
coefficients.

The prototype code was compiled with the following options when creating the test data files:
-g -Wall —02 -march=nocona -m32 —mfpmath=sse —msse2

The following are a set of brief descriptions of the main set of modules used within the prototype. It
should be noted that almost all library modules are not referenced in the explanations below. The
modules within the main bandcal directory or the prototype are discussed and any library modules
that were determined to be important to the explanation of either results, input parameters, or output
parameters.

getpar

Reads the parameters from the input ODL parameter file. Input parameters include: co-registered
DEM, CPF, LOS resampling grid, geometric LOS model file and output band calibration report file
names, the minimum points, number of coefficients, effective CPF file dates, and output file print
flags. The minimum points variable ensures that the normal matrix contains a minimum number
along its diagonal to zero out any omitted bands. Rather than being removed from the solution, the
offsets for omitted bands are set to zero with a weight equal to the minimum number of points.
Omitted bands, for calibration or adjustment, are dependent on the bands present within the band



LDCM-ADEF-001
Version 3
accuracy assessment residuals file. A similar approach is used to restrict the number of SCAs that
will be calibrated.

read_b2bchout
Reads band accuracy assessment residuals file. Also determines the specific SCAs and bands to
calibrate by checking the band accuracy assessment residuals for SCAs and bands present.

oli_get _dem
Reads DEM file into IMAGE data structure.

oli_get_model
Reads OLI geometric/LOS model.

oli_get grid
Reads OLI LOS geometric resampling grid.

12. bandcal

13. Main driver for determining new Legendre LOS. Calls module to retrieve ODL parameters (getpar), calls
module to read band accuracy assessment residuals files (read_b2bchout), reads elevation or DEM data
(oli_get_dem), reads LOS geometric resampling grid, reads geometric line-of-sight model, and solves for
new Legendre LOS (solve_focal_plane).

14. solve_focal_plane

15. Module to solve for new Legendre LOS. Loops on each valid tie-point for each SCA and each band
combination. Calls module get_los_errors to determine per tie-point adjustment needed for determining
least squares (LSQ) solution for new Legendre LOS coefficients. Calculates post and pre-fit statistics
associated with Legendre LOS coefficients.

16. get_los_errors

17. Calculates delta input line and sample LOS needed for LSQ. Reads elevation for tie-point, maps tie-point to
input space, finds adjustment needed between search and reference LOS vectors.

18. write_ SCA_parameters_cpf

Writes out a new set of Legendre LOS. Format fits LOS group within OLI CPF.

7.2.10.7 Procedure

Band calibration uses the residuals measured during the Band Registration Accuracy Assessment
Algorithm (See the Band Registration Accuracy Assessment ADD) to determine updates to the
Legendre LOS coefficients (See Line-of-Sight Model Creation ADD). The band calibration process
involves taking the residuals from band registration accuracy assessment, measured in output space,
mapping them into input space angular deltas in terms of along- and across-track LOS angles and
performing a least squares fit of the input space LOS angle deltas to a set of 2" order Legendre
polynomial correction coefficients. The correction polynomials calculated represent updates to the
original LOS Legendre polynomial coefficients. New Legendre LOS coefficients can be found by
combining the correction coefficients with the original coefficients.

Due to the differences in viewing geometry between bands within a SCA, along with the differences in
viewing geometry between SCAs, the effects due to relief displacement must be taken into account
during band calibration. To account for relief displacement during B2B calibration a DEM is required.
The resampling grid and LOS model is also required during B2B calibration. The resampling grid, the
corresponding detector’s IFOV, and the LOS model's Legendre coefficients are used to map the
residuals from output space to angular differences in input space.



LDCM-ADEF-001
Version 3

A least squares fit is done on all requested bands and SCAs using the band-to-band tie point
measurements from all band-pair combinations for a single SCA at a time. Requested bands and
SCAs to process are based on the bands and SCAs present within the Band Registration Accuracy
Assessment residuals file.

7.2.10.7.1  Stage 1- Data input

The data input stage involves loading the information required to perform the band calibration. Input
file names are needed for: geometric LOS resampling grid, LOS model, band registration accuracy
assessment results (B2B residuals file), output band calibration report file name, and the L1T DEM
file name. Further input parameters are the effective begin and end dates of the new Legendre LOSs
calculated, trending flag, CPF group creation flag, and individual tie-point reporting. Once the file
names for the input data needed are retrieved the files can be opened and read.

Get ODL Parameters

Reads the parameters from the input ODL parameter file. This process was modified from the ALIAS
heritage version to handle new inputs: minimum points, flag for CPF group creation, CPF effective
dates, and flag for reporting individual tie-point results. The minimum points variable ensures that the
normal matrix contains a minimum number along its diagonal to zero out any omitted bands. Rather
than being removed from the solution, the offsets for omitted bands are set to zero with a weight
equal to the minimum number of points.

Read Band-to-Band Residual File
Reads band accuracy assessment residuals file.

Read DEM
Read DEM file into IMAGE data structure.

Read OLI LOS Model
Read OLI geometric/LOS model.

Read LOS Geometric Grid
Read OLI LOS resampling grid.

7.2.10.7.2 Stage 2 - Setup Least Squares Matrices and Solve

For each input SCA, every residual for each input band combination that is not an outlier is mapped
back to input space. These input space mappings are single value adjustments needed for each
point to align the LOS, associated with the focal plane, between the bands of the combination. This
mapping procedure is described in more detail below. Once all of these residuals are mapped back
to the focal plane and stored within the least-squares (LSQ) matrices new LOSs can be calculated.
PAN band residuals must be scaled by a factor of 2 to account for the resolution differences between
the PAN band and the multispectral bands and the fact that the PAN residuals were measured in an
image that had been resolution reduced to match the multispectral bands.

The matrices defining calibration the process takes the following form:

[Allcoeft |=[¥]



LDCM-ADEF-001
Version 3

The matrices [A] and [Y] shown above correspond to one tie point measurement. The matrix [coeff]
are the unknown adjustments to the Legendre LOS coefficients, the matrix [A] contain the Legendre
coefficient multipliers for the band combination corresponding to that one measurement, and the [Y]
matrix contains the input space residuals for that one measurement. For one measurement the
matrices have the following dimensions:

[coeff] = (2 * Number of Legendre * Number of bands) x 1 =M x 1

[A] = 2 x (2 * Number of Legendre * Number of bands) =2xM

[Y]=2x1

a'bl,O
a'bl,l
a‘b1,2

bbl,O

bbl,l
bb1,2

a'b2 0
coeff |= '
[ ] ab2,1

ab2,2

bb2,0

bb9,0

bbg,l

_bb9,2_

Where:

apij = Legendre coefficient j for line direction (along track) for band i

byij = Legendre coefficient j for sample direction (across track) for band i
] =0, 1, 2 or the Number of Legendre coefficients to solve.

i=1,2,...,.9 (Number of OLI bands)

A 2x1 matrix pertaining to one residual measurement can be defined as:

Ivl= LsAa:inr:;e)le}

Where:
Aline = input space residual in line direction (angular)
Asample = input space residual in sample direction (angular)

The input space residuals are calculated by finding the nominal (search) LOS in input space and the
measured (search + measured offset) LOS in input space. These LOSs are found by mapping the
output space line and sample locations to input space line and sample locations using the LOS
geometric resampling grid (See OLI Resampling ADD) and then using the LOS model (see Model



LDCM-ADEF-001
Version 3
Line-of-Sight Creation ADD) to convert the input space locations to LOSs. These input space
nominal and measured locations are also used to construct the Legendre coefficient multipliers.

The design matrix [A] for one residual measurement is then:

['Ahik][coeﬁ ] = [Yn]

0 0 —rl -rl .. 0 0 0 -0l | 0 0 0 0
[a]- "ni0 i ] ko k.

0 - - 0 0 0 —rInIO —rInIJ 0--0 0 0 0 SIn,k,O sInkj 0 0
Where:

rlh,ij = reference band i Legendre polynomial

slyk; = search band k Legendre polynomial

j=0, 1, 2 or the Number of Legendre coefficients to solve
n = tie-point number

These matrices define one observation. A sequence of observations can be summed to define the
normal equations for a set of coefficients that can be used to update the OLI LOS Legendre
coefficients:

[N ] = Z A;rikWiI:lAnik
[L] = Z A:ikWn:lYnik

Where [N] and [L] are summed over all n for all i, k band combinations. W is a weight matrix that is
currently set to the same weight for all observations.

Since all of the tie point observations involve band differences, the solution lacks an absolute
reference. To stabilize the solution a constraint observation is added to provide such a reference.
This additional observation is required for the PAN band and represents an offset of zero for each
direction (line and sample) of the PAN band. This allows the PAN band to be used as a reference
and all other bands are then registered to it.

[Aoo] =

O O B O O O
O B O O O O
R O O O O O
O O O O O o
O O O O o o
O O O O o o

O O O O O k-
O O O O +—» O
O O O+ O O

[Yoo] =

O O O O O o




LDCM-ADEF-001
Version 3
Where the PAN band is stored in the first two columns of the [A] observation matrix.

The bands that are not to be used in the solution process are removed by setting the corresponding
diagonal elements of normal matrix [N] to the minimum number of points (given as an input value).
The solution for a new set of Legendre coefficients is then:

[coeff ]=[N]*[L]

Band Calibration Processing Steps

Note: Array indexes are zero-relative.
nLeg = Number of Legendre update coefficients to solve (1, 2, 3 valid options).
Matrix indexes are zero relative

Solve for New Focal Plane Parameters

Loop on each valid tie-point for each SCA and each band combination. Calculate LOS errors to determine per
tie-point adjustment needed to LOS. Assimilate normal matrices and solve for updates needed to Legendre
LOS, calculate new Legendre LOS based on updates from least-squares-solution. Calculate post and pre-fit
statistics.

Calculate Line of Sight Angular Errors
Calculate delta input line and sample LOS needed for LSQ. Read elevation for tie-point, map tie-point to input
space, and find adjustments needed between search and reference LOS vectors.

1. Initialize parameters

o> 0
W | =
[ ] { 0 0'2}
Where o® = 16
2. For each SCA to process

Initialize pre-fit statistics variables
pre-fit sum line = 0
pre-fit sum samzple =0
pre-fit sum line“ =0
pre-fit sum sample? = 0
Initialize LSQ matrices to zero
[N]=[0]
[L] =[0]
2.1 For each band combination present
rband = reference band
sband = search band
2.1.1 For each tie-point
2.1.2 Calculate reference line, sample location and search adjusted line, sample location.
rline = tie-point reference line location
rsamp = tie-point reference sample location
sline = tie-point search line location + line offset measured
ssamp = tie-point search sample location + sample offset measured
Note: sline, ssamp is the adjusted (or true) search location.



LDCM-ADEF-001
Version 3

Note that rline, rsamp, sline, ssamp are output space pixel locations.
2.1.3 Set rband and sband to zero-relative
rband = rband - 1
sband = shand - 1
Map residuals to input space (focal plane space).
2.1.4 Find elevation for reference and sample locations
relev = elevation at rline,rsamp
selev = elevation at sline,ssamp
2.1.5 Map rline,rsamp and sline,ssamp to input space using 3d_ols2ils (See Note #2) and the
search band OLI resampling grid.
(riline,risamp) = 3d_ols2ils(search_grid, relev, rline, rsamp)
(siline,sisamp) = 3d_ols2ils(search_grid, selev, sline, ssamp)
Where
riline, risamp is the input space location of reference tie-point location.
siline, sisamp is the input space location of adjusted search tie-point location.
search_grid is the OLI resampling grid for the search band.
Note: Search band grid is used for mapping both the adjusted search (siline,sisamp) and the reference

locations.
2.1.6 Calculate Legendre normalized detector location
2.0* risamp
rnorm = g _
number detectorsin SCA —1
2.0*sisamp
snorm =

number detctorsin SCA -1 B

rnorm = normalized reference detector
snorm = normalized adjusted search detector
2.1.7 Calculate reference and search along and across track LOS.

nom _sear _ x = coef _ X, +coef _x , *rnorm+coef _x ,*(1.5* rnorm® —0.5)

nom _sear_y=coef _y ,+coef _y. , *rnorm+coef _y ,*(1.5* rnorm? —0.5)
sear _ x =coef _x,, +coef _x, *snorm+coef _x, ,*(1.5*snorm” —0.5)

sear _y =coef _y,,+coef _y,, *snorm+coef _y,,*(1.5*snorm” —0.5)

Where

ref_x, ref_y = along and across track view angles
sear_x, sear_y = along and across track view angles
coef Xsn = search Legendre along track coefficients
coef_ysn = search Legendre across track coefficients
2.1.8 Determine LOS vectors

sear z=1.0



LDCM-ADEF-001
Version 3

m= \/sear_xz +sear _y® +sear _z?

sear _ X
sear _ X=——=>
m
sear _y
sear _y=——=2>
m
sear _z
sear _ z=——=-
m

nom_sear z=1.0

m :\/nom_sear_x2 +nom_sear _y?+nom _sear z°

nom _sear _ X
nom_sear X=—=——="

m

nom _sear Yy

nom_sear y=—=——=2
m

nom _sear _z

nom_sear z=——=—"— ="
m

2.1.9 Calculate the LOS errors
2.1.9.1 Determine effective line-of-sight instantaneous-field-of-view (IFOV)

2.1.9.1.1 Map input search pixel location, line and sample, to output space.
sline = search line location

ssamp = search sample location

elevation = elevation for location sline, ssamp

Calculate elevation planes bounding current elevation.
elevation i
zplane = — —— + grid zero plane
grid z spacing
elevO = grid z spacing * (zplane — grid zero plane)
elevl = elevO + grid z spacing

Calculate cell index, row and column, for search line and sample location and zplane.
row = sline / grid cell line spacing

column = ssamp / grid cell sample spacing

cell index0 = nrows * ncols * zplane + row * ncols + column

Where:

grid z spacing = elevation difference between two grid planes
ncols = number of grid cell columns

nrows = number of grid cell rows

Calculate output space line, sample location for input space search line, sample location and zplane.
a0.1.2.3 = grid sample location forward mapping coefficients for cell index0
bo.123 = grid line location forward mapping coefficients for cell index0

Ims = sline * ssamp



LDCM-ADEF-001
Version 3
osamp0 = ap + a; * ssamp + a; * sline + a3 *Ims
oline0 = bp + by * ssamp + b, * sline + bz * Ims

Calculate cell index, row and column, for search line and sample location and zplane +1.
cell index1 = nrows * ncols * (zplane + 1.0) + row * ncols + colu